Holt California Mathematics

Course 2 Homework and Practice Workbook

HOLT, RINEHART AND WINSTON

A Harcourt Education Company Orlando • Austin • New York • San Diego • London

Copyright © by Holt, Rinehart and Winston

All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher.

Requests for permission to make copies of any part of the work should be mailed to the following address: Permissions Department, Holt, Rinehart and Winston, 10801 N. MoPac Expressway, Building 3, Austin, Texas 78759.

HOLT and the "**Owl Design**" are trademarks licensed to Holt, Rinehart and Winston, registered in the United States of America and/or other jurisdictions.

Printed in the United States of America

If you have received these materials as examination copies free of charge, Holt, Rinehart and Winston retains title to the materials and they may not be resold. Resale of examination copies is strictly prohibited.

Possession of this publication in print format does not entitle users to convert this publication, or any portion of it, into electronic format.

ISBN 978-0-03-094575-5 ISBN 0-03-094575-5

1 2 3 4 5 170 10 09 08 07

CONTENTS

pter 1	I
pter 2	
pter 3	3
pter 4	3
pter 5	5
pter 6	2
pter 7	9
pter 8	3
pter 9	3
pter 10	2
pter 11	9
pter 12	7

iii

Name California Standards AF1.2, AF1.4	Date Class
LESSON Practice	
Evaluating Algebra	-
Evaluate each expression for the give	en value of the variable.
1. 6 <i>x</i> + 2 for <i>x</i> = 3	2. 18 – <i>a</i> for <i>a</i> = 13
3. $\frac{1}{4}y$ for $y = 16$	4. $9 - 2b$ for $b = 3$
5. $44 - 12n$ for $n = 3$	6. 7.2 + 8 <i>k</i> for $k = 2$
7. $\overline{20(b-15)}$ for $b=19$	8. $n(18-5)$ for $n=4$
Evaluate each expression for the give	en value of the variables.
9. $2x + y$ for $x = 7$ and $y = 11$	10. $4j - k$ for $j = 4$ and $k = 10$
11. $9a - 6b$ for $a = 6$ and $b = 2$	12. $5s + 5t$ for $s = 15$ and $t = 12$
13. $(15 - n)m$ for $m = 7$ and $n = 4$	14. $w(14 - y)$ for $w = 8$ and $y = 5$
If <i>q</i> is the number of quarts of lemona to find the number of cups of lemonac the lemonade. How much mix is neede amount of lemonade?	de mix needed to make
15. 2 quarts 16. 8 quarts	17. 12 quarts 18. 18 quarts
19. If <i>m</i> is the number of minutes a taxi r be used to find the cost of a taxi ride	

How much will it cost for a 12-min taxi ride?

Name	Date Class
California Standards AF1.1	
Practice 1-2 Writing Algebraic Ex	innessions
Write an algebraic expression for each	
1. 6 less than twice <i>x</i>	2. 1 more than the quotient of 21 and <i>b</i>
3. 3 times the sum of <i>b</i> and 5	4. 10 times the difference of <i>d</i> and 3
5. the sum of 11 times <i>s</i> and 3	6. 7 minus the product of 2 and <i>x</i>
Write a word phrase for each algebraic	c expression.
7. 2 <i>n</i> + 4	8. 3 <i>r</i> – 1
9. 10 – 6 <i>n</i>	10. 7 + $\frac{2}{c}$
11. 15 <i>x</i> – 12	12. $\frac{y}{5}$ + 8
13. Maddie earns \$8 per hour. Write an	n Earnings
algebraic expression to evaluate how	, <u>15</u>
much money Maddie will earn if she works for 15, 20, 25, or 30 hours.	20
	25
	30

14. Write a word problem that can be evaluated by the algebraic expression y - 95, and evaluate it for y = 125.

Name	[Date Class
California Standards 🛛 MS2.5, NS1.1		
LESSON Practice		
Integers a	nd Absolute Valu	e
Compare. Write $<, >,$ or =		
16 6	2. 12 10	3. 18 5
Write the integers in order	from least to greates	t.
4. -8, 2, -11	5. -12, -15, 0	6. –24, –17, 30
7. 16, -14, -7	8. -9, -7, -16	9. -19, -23, -10
Simplify each expression.		
10. -17	11. -35	12. 19
13. -8 + -4	14. -12 + 12	15. 19 + -8
16. 29 – 16	17. 35 – 9	18. 14 - 14
19. -15 + 10	20. -9 + 30	21. 24 + -8

22. Natalie keeps track of her bowling scores. The scores for the games she played this Saturday relative to her best score last Saturday are Game A, 6; Game B, -3; Game C, 8; and Game D, -5. Use <, >, or = to compare her first two games. Then list her games in order from the lowest score to the highest.

-15)
- /
: 4
4
-
- 8
8
-
-
-
-

- new cards for the collection. How many trading cards does she have now?
- **20.** The running back for the Bears carries the ball twice in the first quarter. The first run he gained fifteen yards and the second run he lost eight yards. How many yards did the two runs total?

		Date	Class
	ns1.2, ••••• NS2.5 ractice ubtracting Integ	iers	
Subtract.		,010	
1. 8 – 2	2. 10 – 5	3. 7 – 12	4. 16 – 10
5. 3 – 10	6. 16 – 9	7. -4 - 9	8 8 - 10
9. 33 – 57	10. 16 – 49	11. –114 – 19	12. -88 - (-10)
		iven value of the variable \cdot 10 for $w = 15$ 15.	
16. 15 – <i>x</i> for <i>x</i> :	= -12 17. w -	- 20 for $w = -15$ 18.	-15 - x for $x = -10$
19. –9 – <i>x</i> for <i>x</i>	= -20 20. <i>y</i> -	(-10) for $y = -10$ 21 .	x - (-15) for $x = -5$
22. $ w - 8 + 6$	for $w = 9$ 23. 16	- t + 8 for $t = 10$ 24.	14 - x - 9 for $x = 8$
altitude of Mt.		laska is 16,390 feet. The s 14,433 feet. What is the wo mountains?	

26. In January, Jesse weighed 230 pounds. By November, he weighed 185 pounds. How much did Jesse's weight change?

iname	Ν	ar	n	e
-------	---	----	---	---

California Standards ••••• NS1.2

Date

	actice		
LECCON	Itiplying and Divi	ding Integers	
Multiply or divide			
1. 6 • 7	2. $\frac{-15}{5}$	3. −7 · 3	4. $\frac{20}{-4}$
5. <u>-36</u> <u>-4</u>	6. -8(-9)	7. $\frac{-48}{-6}$	8. 7(-7)
9. 5(-8)	10. (-6)(-9)	11. $\frac{-36}{4}$	12. $\frac{42}{-7}$
13. -9(-3)	14. (-4)(8)	15. $\frac{-54}{-9}$	16. $\frac{-72}{8}$
Simplify.			
17. -5(3 + 7)	18. 10(8 – 2)	19. -4(12 - 3)	20. 9(15 - 8)
21. 12(-9 + 4)	22. -11(7 - 13)	23. 15(-12 + 8)	24. -10(-8 - 6)
25. 6(-12 + 1)	26. -5(3 - 12)	27. -8(-5 - 5)	28. 7(12 – 3)
29. 10(-7 - 1)	30. 12(2 – 5)	31. -15(-2 - 1)	32. 9(8 – 20)

33. Kristin and her three friends buy a pizza with twelve slices and split it equally. How many slices will each person receive?

34. The temperature was -1° F, -5° F, 8° F, and -6° F on four consecutive days. What was the average temperature for those days?

Name		Date	Class
California Standards Preparation for LESSON Practi 11-7 Solving		Adding or S	Subtracting
Determine which value	is a solution of the	equation.	
1. <i>x</i> − 6 = 12; <i>x</i> = 6, 8,	or 18	2. 9 + <i>x</i> = 17	; <i>x</i> = 6, 8, or 26
3. <i>x</i> – 12 = 26; <i>x</i> = 14,	38, or 40	4. $x + 18 = 59$	9; <i>x</i> = 37, 41, or 77
Solve.			
5. <i>n</i> − 8 = 11	6. 9 + <i>g</i> = 13		7. <i>y</i> + 6 = 2
8. −6 + <i>j</i> = −12	9. <i>s</i> – 8 = 11		10. $-16 + r = -2$
11. <i>a</i> + 35 = 51	12. <i>m</i> − 6 = −1	3	13. <i>d</i> − 12 = −5
14. 7.5 + <i>c</i> = 10.6	15. <i>y</i> – 1.7 = 0.	6	 16. <i>m</i> − 2.25 = 4.50
 17. Two sisters, Jenny ar team. Last season th 	nd Penny, play on the		

- team. Last season they scored a combined total of 458 points. Jenny scored 192 of the points. Write and solve an equation to find the number of points Penny scored.
- **18.** After his payment, Mr. Weber's credit card balance was \$245.76. His payment was for \$75.00. Write and solve an equation to find the amount of his credit card bill.

Ν	a	m	е
	u		<u> </u>

California Standards	Preparation for	• AF4.0; AF1.3,	••••• MG1.3

Date Class

1-8	Practice Solving Equations by Multiplying or Dividing

Solve and check.

1. 4 <i>w</i> = 48	2. 8 <i>y</i> = 56	3. −4 <i>b</i> = 64
4. $\frac{x}{4} = -9$	5. $\frac{v}{-6} = -14$	6. $\frac{n}{21} = -3$
7. 5 <i>a</i> = −75	8. 54 = 3 <i>q</i>	9. 23 <i>b</i> = 161
10. $\frac{k}{21} = 15$	11. $\frac{W}{-17} = 17$	12. 11 = $\frac{r}{34}$
13. 672 = −24 <i>b</i>	14. $\frac{u}{25} = 13$	15. 42 <i>m</i> = −966

- **16.** Alex scored 13 points in the basketball game. This was $\frac{1}{5}$ of the total points the team scored. Write and solve an equation to determine the total points *t* the team scored.
- **17.** Jar candles at the Candle Co. cost \$4. Nikki spent \$92 buying jar candles for party favors. Write and solve an equation to determine how many jar candles *c* Nikki bought at the Candle Co.

me	1	e Class
	Two-Step Equations	
lve. Check each answ		
. 5 <i>g</i> + 9 = 24	2. $-6w - 3 = 9$	3. 2 <i>d</i> − 16 = 12
.7t - 3 = 11	5. 4 <i>n</i> + 1 = 13	6. 3 <i>k</i> – 15 = 6
live. $\frac{y}{6} - 7 = 2$	8. $\frac{m}{2} + 8 = 5$	9. $1 + \frac{s}{5} = 8$
$\frac{1}{-3 + \frac{b}{7} = -6}$	11. $6 + \frac{x}{3} = 13$	12. $\frac{f}{5} - 9 = -7$
$-4 + \frac{v}{2} = 5$	14. $\frac{a}{7} + 1 = 9$	15. $\frac{W}{-5} + 8 = 2$

16. Two years of local phone service costs \$883, including the installation fee of \$55. What is the monthly fee?

Name		Date	Class
California Standards 🖝 N	S1.5; NS1.3		
LESSON Pr	actice ntional Numbers		
Write each fraction			
1. $\frac{1}{8}$	2. $\frac{8}{3}$	3. $\frac{14}{15}$	4. $\frac{16}{5}$
" 8	2. 3	9. 15	 5
5. $\frac{11}{16}$	6. $\frac{7}{9}$	7. $\frac{4}{5}$	8. $\frac{31}{25}$
16	- g	5	25
Write each decim	nal as a fraction in s	simplest form.	
9. 0.72	10. 0.058	11. -1.65	12. 2.1
13. 0.036	14. –4.06		
17. -0.60	18. 6.95	19. 0.016	20. 0.0005
Write each repea	ting decimal as a fr	 raction in simplest for	 /m.
21. 0.8	22. 0.84	23. 0.841	24. 0.4
25. 0.28	26. 0.2	27. 0.54	28. 0.774
29. Make up a frag denominator.	ction that cannot be	simplified that has 24 a	

Name

California Standards NS1.1, NS1.3

LESSON Practice **2-2** Comparing and Ordering Rational Numbers Compare. Write <, >,or =. **2.** $\frac{3}{5}$ $\frac{7}{10}$ **1.** $\frac{1}{8}$ $\frac{1}{10}$ **3.** $-\frac{1}{3}$ $-\frac{3}{4}$ **4.** $\frac{5}{6}$ $3\frac{3}{4}$ 5. $-\frac{2}{7}$ $-\frac{1}{2}$ **6.** $1\frac{2}{9}$ 1 $\frac{2}{3}$ **7.** $-\frac{8}{9}$ $-\frac{3}{10}$ **8.** $-\frac{4}{5}$ $-\frac{8}{10}$ **9.** 0.08 $3 \frac{3}{10}$

- **11.** $2\frac{4}{9}$ $2\frac{3}{4}$ **10.** $\frac{11}{15}$ 0.73 **12.** $-\frac{5}{8}$ -0.58
- **14.** $-\frac{1}{6}$ $-\frac{1}{9}$ **13.** $3\frac{1}{4}$ 3.3 **15.** 0.75 3_{4} **16.** $-2\frac{1}{8}$ -2.1 **17.** 1 $\frac{1}{2}$ 1.456 **18.** $-\frac{3}{5}$ -0.6
- 19. On Monday, Gina ran 1 mile in 9.3 minutes. Her times for running 1 mile on each of the next four days, relative to her time on Monday, were $-1\frac{2}{3}$ minutes, -1.45 minutes, -1.8 minutes, and $-1\frac{3}{8}$ minutes. List these relative times in order from least to greatest.
- **20.** Trail A is 3.1 miles long. Trail C is $3\frac{1}{4}$ miles long. Trail B is longer than Trail A but shorter than Trail C. What is a reasonable distance for the length of Trail B?

ame. s of n.
4 15
3

Name		Date	Class
California Standards – NS	actice		
	Itiplying Rational		
	th answer in simplest $12(9)$		- 13(5)
1. $\frac{14}{8}\left(\frac{17}{21}\right)$	2. $-\frac{12}{20}\left(\frac{9}{18}\right)$	3. $-\frac{12}{30}\left(-\frac{42}{72}\right)$	4. $-\frac{13}{35}\left(-\frac{5}{26}\right)$
5. $-\frac{5}{18}\left(\frac{8}{15}\right)$	6. $\frac{7}{12}\left(\frac{14}{21}\right)$	7. $-\frac{1}{9}(\frac{27}{24})$	8. $-\frac{1}{11}\left(-\frac{3}{2}\right)$
		9(24)	
9. $\frac{7}{20}\left(-\frac{15}{28}\right)$	10. $\frac{16}{25}\left(-\frac{18}{32}\right)$	11. $\frac{1}{9}\left(-\frac{18}{17}\right)$	12. $\frac{17}{20}\left(-\frac{12}{34}\right)$
13. $-4\left(2\frac{1}{6}\right)$	14. $\frac{3}{4}\left(1\frac{3}{8}\right)$	15. $3\frac{1}{5}\left(\frac{2}{3}\right)$	16. $-\frac{5}{6}\left(2\frac{1}{2}\right)$
Multiply.			
7. −2(−5.2)	18. 0.53(0.04)	19. (-7)(-3.9)	20. -2(8.13)
21. 0.02(-4.62)	22. 0.5(-7.8)	23. (-0.41)(-8.5)	24. (-8)(6.3)
· · · ·			
25. 15(-0.05)	26. (-3.04)(-1.7)	27. 10(-0.09)	28. (-0.8)(-0.15)
	for $6\frac{2}{3}$ hours. He receiv th was Travis paid for d		

Name		Date	Class
LEODON	actice		
	iding Rational N		
	answer in simplest		
1. $\frac{1}{5} \div \frac{3}{10}$	2. $-\frac{5}{8} \div \frac{3}{4}$	3. $\frac{1}{4} \div \frac{1}{8}$	4. $-\frac{2}{3} \div \frac{4}{15}$
5. $1\frac{2}{9} \div 1\frac{2}{3}$	6. $-\frac{7}{10} \div \left(\frac{2}{5}\right)$	7. $\frac{6}{11} \div \frac{3}{22}$	8. $\frac{4}{9} \div \left(-\frac{8}{15}\right)$
9. ³ / ₈ ÷ −15	10. $-\frac{5}{6} \div 12$	11. $6\frac{1}{2} \div 1\frac{5}{8}$	12. $-\frac{9}{10} \div 6$
Divide. 13. 24.35 ÷ 0.5	14. 2.16 ÷ 0.04	15. 3.16 ÷ 0.02	16. 7.32 ÷ 0.3
17. 87.36 ÷ 0.6	18. 79.36 ÷ 0.8	19. 4.27 ÷ 0.007	20. 63.81 ÷ 0.9
21. 1.23 ÷ 0.003	22. 62.46 ÷ 0.09	23. 21.12 ÷ 0.4	24. 82.68 ÷ 0.06
		n value of the variable r $x = 0.03$ 27.	
28. A can of fruit consize is $\frac{1}{2}$ cup. H	ontains 3 <mark>1</mark> cups of fru Iow many servings are	it. The suggested servir e in the can of fruit?	ng

Name	
------	--

Date _____ Class _____

California Standards - NS1.2, - NS2.2 Practice							
(Adding	and Su	btracting	with Unl	ike Denc	ominators
Add	or subtra						
1	$\frac{2}{3} + \frac{1}{2}$	2.	$\frac{3}{5} + \frac{1}{3}$	3.	$\frac{3}{4} - \frac{1}{3}$	4.	$\frac{1}{2} - \frac{5}{9}$
5	$\frac{5}{16} - \frac{5}{8}$	6.	$\frac{7}{9} + \frac{5}{6}$	7.	$\frac{7}{8} - \frac{1}{4}$		$\frac{5}{6} - \frac{3}{8}$
9. 2	$2\frac{7}{8} + 3\frac{5}{12}$	10.	$1\frac{2}{9} + 2\frac{1}{1}$	<u></u> <u>8</u> 11.	$3\frac{2}{3} - 1\frac{3}{5}$	12.	$1\frac{5}{6} + (-2\frac{3}{4})$
13	$\frac{5}{72} + \frac{68}{90}$	 14.	$\frac{81}{140} - \frac{6}{10}$	7 <u>15</u> 15.	$\frac{11}{45} + \frac{21}{96}$	16.	$\frac{56}{70} - \frac{107}{198}$
Evaluate each expression for the given value of the variable. 17. $2\frac{3}{8} + x$ for $x = 1\frac{5}{6}$ 18. $x - \frac{2}{5}$ for $x = \frac{1}{3}$ 19. $x - \frac{3}{10}$ for $x = \frac{3}{7}$							
20. 1	$1\frac{5}{8} + x$ for	$x = -2\frac{1}{6}$	21 . <i>x</i>	$-\frac{3}{4}$ for $x =$	$\frac{1}{6}$	22. $x - \frac{3}{10}$	$\frac{1}{2}$ for $x = \frac{1}{2}$
23.	Ana worke	— d 6 <u>-</u> h on l	– Mondav. 5	$\frac{3}{5}$ h on Tues	day and $7\frac{1}{2}$	- h on	

23. Ana worked $6\frac{1}{2}$ h on Monday, $5\frac{3}{4}$ h on Tuesday and $7\frac{1}{6}$ h on Friday. How many total hours did she work these three days?

Name

California Standards - AF4.0 LESSON Practice **One-Step Equations with Rational Numbers** Solve. **1.** x + 6.8 = 12.19**2.** v - 10.24 = 5.3**3.** 0.05w = 6.256. $\frac{d}{-8.4} = -10.2$ 4. $\frac{a}{9.05} = 8.2$ **5.** -12.41 + x = -0.069. $\frac{X}{54} = -7.18$ **8.** n - 8.09 = -11.65**7.** -2.89 = 1.7m11. $\frac{6}{11}y = -\frac{18}{22}$ 12. $\frac{7}{10}d = \frac{21}{20}$ **10.** $\frac{7}{9} + x = 1\frac{1}{9}$ **14.** $x - \frac{15}{21} = 2\frac{6}{7}$ **13.** $x - \left(-\frac{9}{14}\right) = \frac{5}{7}$ **15.** $-\frac{8}{15}a = \frac{9}{10}$

- **16.** A recipe calls for $2\frac{1}{3}$ cups of flour and $1\frac{1}{4}$ cups of sugar. If the recipe is tripled, how much flour and sugar will be needed?
- 17. Daniel filled the gas tank in his car with 14.6 gal of gas. He then drove 284.7 mi before needing to fill up his tank with gas again. How many miles did the car get to a gallon of gasoline?

Name	Date	Class
California Standards 🖛 AF4.1		
LESSON Practice 2-8 Two-Step Equations	with Dational Nu	umboro
Write and solve a two-step equation to a questions.	answer the following	
 The school purchased baseball equipment and uniforms for a total cost of \$1762. The equipment costs \$598 and the uniforms were \$24.25 each. How many uniforms did the school purchase? 	jogs from hom which is $\frac{3}{4}$ mile laps around the	niles every day. She he to the school track, e away. She then runs he $\frac{1}{4}$ -mile track. Carla he. How many laps does school?
Solve.		
3. $\frac{a}{3} + \frac{5}{3} = 6$ 4. $\frac{x}{4} + \frac{2}{3} = \frac{-2}{3}$	5. $\frac{y}{6} - \frac{2}{3} = -3$	6. $\frac{k}{8} + \frac{1}{4} = \frac{7}{4}$
7. $0.5x - 6 = -4$ 8. $\frac{x}{2} + 3 = -4$	9. $\frac{1}{5}n + 3 = 6$	10. 2 <i>a</i> – 7 = – 9
11. $\frac{3x}{4} - \frac{1}{2} = 4$ 12. $-7.8 = 4.4 + 2r$	13. $\frac{4w}{3} - \frac{5}{6} = -2$	14. 1.3 – 5 <i>r</i> = 7.4
 15. A phone call costs \$0.58 for the first 3 for each additional minute. If the total costs \$4.78, how many minutes was the 	charge for the call	
16. Seventeen less than four times a number.	ber is twenty-seven.	

Name	Date	Class
California Standards 🛛 🖛 AF1.3		
3-1 Properties of Rationa	al Numbers	
Name the property that is illustrated in	each equation.	
1. 16 + $\frac{1}{3} = \frac{1}{3} + 16$	2. 4 · (3 · <i>p</i>) =	: (4 · 3) · <i>p</i>
3. $(11 + m) + 9 = 11 + (m + 9)$	4. 6 • 1.5 = 1.	5 • 6

Simplify each expression. Write a reason for each step.

5. 38 + 19 + 2

38 + 19 + 2 =	Reason:
=	Reason:
=	Reason:
=	Reason:
6. $\frac{1}{3} \cdot 8 \cdot 18$	
$\frac{1}{3} \cdot 8 \cdot 18 = _$	Reason:
=	Reason:
=	Reason:
=	Reason:

Write each product using the Distributive Property. Then simplify.

7. 7(31)	8. 5(28)
7(31) =	5(28)=
=	=
=	=
=	=

Name California Standards LESSON	ice	Date	Class
	fying Algebraic Expl	ressions	
Combine like terms.			
1. 8 <i>a</i> – 5 <i>a</i>	2. 12 <i>g</i> + 7 <i>g</i>	3.	4 <i>a</i> + 7 <i>a</i> + 6
4. 6 <i>x</i> + 3 <i>y</i> + 5 <i>x</i>	5. 10 <i>k</i> – 3 <i>k</i> + 5 <i>h</i>	6.	3p – 7q + 14p
7 . 3 <i>k</i> + 7 <i>k</i> + 5 <i>k</i>	8. 5 <i>c</i> + 12 <i>d</i> – 6	9.	13 + 4 <i>b</i> + 6 <i>b</i> - 5
10. 4 <i>f</i> + 6 + 7 <i>f</i> – 2	11. $x + y + 3x + 7y$	12.	9 <i>n</i> + 13 - 8 <i>n</i> - 6
Simplify. 13. 4(<i>x</i> + 3) − 5	14. 6(7 + <i>x</i>) + 5 <i>x</i>	15.	3(5+3x)-4x
	ro and a papaigo. His broth		

16. Gregg has q quarters and p pennies. His brother has 4 times as many quarters and 8 times as many pennies as Gregg has. Write the sum of the number of coins they have, and then combine like terms.

17. If Gregg has 6 quarters and 15 pennies, how many total coins do Gregg and his brother have?

Name

California Standards Extension of -AF4.1

LESSON Practice **3-3** Solving Multi-Step Equations

Solve.

- **2.** 9 + 3v 2v = 14**3.** 16 = 4w + 2w - 21. 2x + 5x + 4 = 25**4.** 26 = 3b - 2 - 7b**5.** 31 + 4t - t = 406. 14 - 2x + 4x = 207. $\frac{5m}{8} - \frac{6}{8} + \frac{3m}{8} = \frac{2}{8}$ **8.** $-4\frac{2}{3} = \frac{2n}{3} + \frac{1}{3} + \frac{n}{3}$ **9.** 7a + 16 - 3a = -4**10.** $\frac{x}{2} + 1 + \frac{3x}{4} = -9$ **11.** 7m + 3 - 4m = -9 **12.** $\frac{2x}{5} + 3 - \frac{4x}{5} = \frac{1}{5}$ **13.** $\frac{7k}{8} - \frac{3}{4} - \frac{5k}{16} = \frac{3}{8}$ **14.** 6y + 9 - 4y = -3 **15.** $\frac{5a}{6} - \frac{7}{12} + \frac{3a}{4} = -2\frac{1}{6}$
- 16. The measure of an angle is 28° greater than its complement. Find the measure of each angle.
- 17. The measure of an angle is 21° more than twice its supplement. Find the measure of each angle.
- **18.** The perimeter of the triangle is 126 units. Find the measure of each side.
- **19.** The base angles of an isosceles triangle are congruent. If the measure of each of the base angles is twice the measure of the third angle, find the measure of all three angles.

Name	
------	--

Date _____ Class __

California Standards AF1.1, Extension of Practice 3-4 Solving E Solve.		es on Both Sides
1. 7 <i>x</i> − 11 = −19 + 3 <i>x</i>	2. 11 <i>a</i> + 9 = 4 <i>a</i> + 30	3. $4t + 14 = \frac{6t}{5} + 7$
4. 19 <i>c</i> + 31 = 26 <i>c</i> - 74	5. $\frac{3y}{8} - 9 = 13 + \frac{y}{8}$	6. $\frac{3k}{5} + 44 = \frac{12k}{25} + 8$
7. 10 <i>a</i> – 37 = 6 <i>a</i> + 51	8. 5 <i>w</i> + 9.9 = 4.8 + 8 <i>w</i>	9. $15 - x = 2(x + 3)$
10. 15 <i>y</i> + 14 = 2(5 <i>y</i> + 6)	11. $14 - \frac{w}{8} = \frac{3w}{4} - 21$	12. $\frac{1}{2}(6x-4) = 4x-9$
13. $4(3d-2) = 8d-5$	14. $\frac{y}{3} + 11 = \frac{y}{2} - 3$	15. $\frac{2x-9}{3} = 8 - 3x$
16. Forty-eight decreased be the difference of four time Find the number.	by a number is the same as nes the number and seven.	
17. The square and the equivalent triangle at the right hav perimeter. Find the lenging sides of the triangle.	e the same oth of the	3 <i>x</i>

Name	Date	Class
California Standards 🛛 🛶 AF1.1		
LESSON Practice		
3-5 Inequalities		
Write an inequality for each situ	ation.	
1. There are no more than 7 pea	ches in the bowl.	
2. The aquarium contains more t	han 20 fish.	
3. The length of the branch is at	most 11 inches.	
4. Mike has at least 6 pencils in h	nis backpack.	
Write an inequality for each stat	ement.	
5. A number <i>s</i> increased by 3 is a	at least 19.	
6. A number <i>m</i> decreased by 10	is less than 25.	
7. Twice a number y is no more t	han 12.	
8. The sum of 4 and a number <i>p</i>	is greater than 9.	
Graph each inequality.		
9. $x \ge -3$ $\begin{array}{c} ++++++\\ -5-4-3-2-1 \end{array}$	0 1 2 3 4 5	
10. $n < 4$	0 1 2 3 4 5	
11. $g \le -2$ $\leftarrow ++++++$	0 1 2 3 4 5	
12. $y > \frac{1}{2}$ $\leftarrow + + + + + + + + + + + + + + + + + + $	0 1 2 3 4 5	
Write a compound inequality for	each statement.	
13. A number <i>x</i> is either less than	8 or greater than 15.	
14. A number t is greater than −4 equal to −1.	and less than or	

15. A number *m* is greater than or equal to 0 and less than 6.1.

Name	Da	ate Class	
California Standards AF4.0			
3-6 Solving In		na or Subtractir	na
Solve and graph each inec			.9
1 . <i>x</i> + 4 > 9	2. <i>c</i> − 6 ≤ 1	3. <i>y</i> + 3 ≥ −	8
<+ + + + + + + + + + + + + + + + + + +	<+ + + + + + + + + + + + + + + + + + +	+	
4. $3 + v < -5$	5. 7 + <i>x</i> ≤ 10 < + + + + + + + + + + + + + + + + + +	6. <i>s</i> − 4 < −	
7. <i>b</i> − 2 ≤ 5	8. 7 + <i>n</i> > −2	9. <i>r</i> + 6 ≥ −	·1
<	<	+	
10. −9 + <i>w</i> < −15 <++++++++++++++++++++++++++++++++++++			
13. $k + 3\frac{1}{2} \le 0$	14. <i>n</i> + 7 ¹ / ₂ ≥ 12	15. $-1\frac{2}{3} + b$:	≤ –1
$\overset{-}{\leftarrow} + + + \overset{-}{\leftarrow} + $	<	<pre></pre>	+ + +>

16. Charlotte needs to collect at least 5,000 signatures for her petition. She has already collected 3,187 signatures. Write and solve an equation to determine how many more signatures Charlotte needs.

9. On a snorkeling trip, Antonia dove at least 7 times as deep as Lucy did. If Antonia dove 35 feet below the ocean's surface, what was the deepest that Lucy dove?

10. Last week, Saul ran more than one-fifth the distance that his friend Omar ran. If Saul ran 14 miles last week, how far did Omar run?

	Date Class
California Standards AF4.1 Practice 3-8 Solving Two-Step Ineq	ualities
Solve and graph.	
1. 4 <i>x</i> − 2 < 26	2. $6 - \frac{1}{5}y \le 7$
<pre><++++++++++++++++++++++++++++++++++++</pre>	<+++++++++++++++++++++++++++++++++++++
3. 2 <i>x</i> + 27 ≥ 15	4. 10 <i>x</i> > 14 <i>x</i> + 8
5. 7 − 4 <i>w</i> ≤ 19	6. $\frac{k}{5} + \frac{3}{20} < \frac{3}{10}$
-6-5-4-3-2-1 0 1 2 3 4 5 6	 −1 0 1 2
7. 4.8 − 9.6 <i>x</i> ≤ 14.4	8. $\frac{2}{9} + \frac{\gamma}{3} > \frac{1}{3}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$-1 \qquad 0 \qquad 1 \qquad 2$

- **9.** One-third of a number, decreased by thirty-six, is at most twenty-two. Find the number.
- 10. Jack wants to run at least 275 miles before the baseball season begins. He has already run 25 miles. He plans to run 2.5 miles each day. At this rate, what is the fewest number of days he will need to reach his goal?

Name		Date	Class
California Standards - A			
4-1 Ex			
Write in exponen	itial form.		
1.6 · 6 · 6 · 6	6 · 6 · 6	2 . 7 · 7 · 7 ·	7
3. (-8) · (-8) ·	· (-8) · (-8)	4. 5 • 5 • 5 •	$b \cdot b \cdot b \cdot b$
Simplify.			
5. 10 ²	6. (-6) ²	7. $(\frac{1}{8})^2$	8. (-7) ²
9. (-5) ³	10. 12 ²	11. (-9) ²	12. (-4) ³
13. 2 ⁵	14. 5 ⁴	15. (-3) ⁴	16. $(\frac{1}{6})^3$
		ven values of the variant $18. 4x^2 + y^3$ for	
19. $m^{\rm p} + q^2$ for m	n = 5, p = 2, and q =	= 4 20. $a^4 + 2(b - c^2)$ c = -1	²) for <i>a</i> = 2, <i>b</i> = 4, and
21. Write an expre three times.	ession for five times	a number used as a fac	 ctor

22. Find the volume of a regular cube if the length of a side is 10 cm. (Hint: $V = I^{3}$.)

Copyright $\ensuremath{\mathbb{C}}$ by Holt, Rinehart and Winston. All rights reserved.

Name California Standards NS2.1, Al	F2.1		_ Date	Class
LESSON Pra	ctice ger Exponents			
Simplify the powers	s of 10.			
1. 10 ⁻³	2. 10 ³	3.	10 ⁻⁵	4. 10 ⁻²
5. 10 ⁰	6. 10 ⁴	7.	10 ¹	8. 10 ⁵
Simplify.				
9. (-6) ⁻²	10. (-9) ⁻³		11.	· 2 ⁻⁵
12. (-3) ⁻⁴	13. (-12) ⁻¹		14.	
15. 10 – (3 + 2) ⁰ +	2 ⁻¹	16.	15 + (-6) ⁰ -	3 ⁻²
17. $6(8-2)^0 + 4^{-2}$		18.	$2^{-2} + (-4)^{-1}$	
19. $3(1-4)^{-2}+9^{-1}$	¹ + 12 ⁰	20.	$9^0 + 64(3 + 5)$) ⁻²
21. One milliliter equ	uals 10 ⁻³ liter. Evaluate	e 10 ⁻¹	3.	

27

22. The volume of a cube is 10^6 cubic feet. Evaluate 10^6 .

Name

California Standards NS2.1, •--- NS2.3

LESSON Practice

4-3 Properties of Exponents

Simplify each expression. Write your answer in exponential form.

1. 10 ⁵ • 10 ⁷	2. $x^9 \cdot x^8$	3. 14 ⁷ ⋅ 14 ⁹	4. 12 ⁶ · 12 ⁸
5. $y^{12} \cdot y^{10}$	6. 15 ⁹ • 15 ¹⁴	7. (-11) ²⁰ · (-	$(-11)^{10}$ 8. $(-a)^6 \cdot (-a)^7$
9. $\frac{12^9}{12^2}$	10. $\frac{(-11)^{12}}{(-11)^8}$	11. $\frac{x^{10}}{x^5}$	12. $\frac{16^{10}}{16^2}$
13. $\frac{17^{19}}{17^2}$	14. $\frac{14^{15}}{14^{13}}$	15. $\frac{23^{17}}{23^9}$	16. $\frac{(-a)^{12}}{(-a)^7}$
17. (6 ²) ⁴	18. (2 ⁴) ⁻³	19. $(-3^5)^{-1}$	20. (y ⁵) ²
21. (9 ⁻²) ³	22. (10 ⁰) ³	23. $(x^4)^{-2}$	24. (5 ⁻²) ⁰
Write the produce 25. $\frac{w^{12}}{w^3}$	et or quotient as one 26. $d^8 \cdot$	-	7. $(-15)^5 \cdot (-15)^{10}$

Date

Class

- 28. Jefferson High School has a student body of 6⁴ students. Each class has approximately 6² students. How many classes does the school have? Write the answer as one power.
- **29.** Write the expression for a number used as a factor fifteen times being multiplied by a number used as a factor ten times. Then, write the product as one power.

Name California Standards AF2.2, CALLESSON		Date	Class
	ing and Dividing	Monomials	
Multiply.			
1. $(3c^5)(12c^3)$	2. (2 <i>m</i> ¹⁰)(8 <i>m</i> ³)	3.	$(4r^3s^2)(6rs^2)$
4. $(-3ab^4)(2a^2b)$	5 . (2 <i>p</i> ² <i>q</i>)(-6 <i>pq</i>)	6.	$(x^4)(4x^3y)$
Divide. Assume no dene			$12m^2n^5$
7. $\frac{24x'}{3x^5}$	8. $\frac{50c^9}{5c^8}$	9.	<u>12m²n⁵</u> 3mn ²
10. $\frac{-16x^8y^2}{4x^2y}$	11. $\frac{18p^6q}{-3pq}$	12.	$\frac{60b^2c^4}{12c^4}$
Simplify. 13. $(5n^3)^2$	14. $(-2c^3)^3$	15.	$(3a^2b)^2$

A triangle has a base of 4mn inches and a height of $5m^2n$ inches.

16. The area of a triangle is one-half the product of its base and height. Write and simplify an expression for the area of the triangle.

17. Find the area of the triangle when m = 2 and n = 1.

		Date	Class
California Standards NS1.1			
4-5 Sci	entific Notation		
Multiply.			
1. 115.8 • 10 ⁵	2. 1,316 •	10 ² 3 .	. 21.85 • 10 ⁻⁴
Write each numbe	r in scientific notatio	on.	
4. 75,000,000	5. 208	6.	907,100
7. 56	8. 0.093	9.	0.00006
10. 0.00852	11. 0.0505	12.	0.003007
Write each numbe	r in standard form.		
13. 2.54 × 10 ²	14. 6.7 × 10 ⁻²	15. 1.14 × 10 ³	16. 3.8 × 10 ⁻¹
17. 7.53 × 10 ⁻³	18. 5.6 × 10 ⁴	19. 9.1 × 10 ⁵	20. 6.08 × 10 ⁻⁴
		23. 7.21 × 10 ⁻³	

- **25.** Jupiter is about 778,120,000 kilometers from the Sun. Write this number in scientific notation.
- **26.** The *E. coli* bacterium is about 5×10^{-7} meters wide. A hair is about 1.7×10^{-5} meters wide. Which is wider, the bacterium or the hair?

Name California Standards NS2.	4, AF2.2	Date	Class		
LEODON	ractice quares and Squa	re Roots			
Find the two square roots of each number.					
1. 36	2. 81	3. 49	4. 100		
5. 64	6. 121	7. 25	8. 144		
Simplify each ex	pression.				
9. √81 <i>m</i> ¹⁰	10. √121 <i>d</i> ¹⁶	11. √49 <i>k</i> ⁶	12. $\sqrt{9r^8}$		
13. √144 <i>s</i> ¹²	14. √100 <i>p</i> ⁴	15. \[\sqrt{y^{22}}]	16. √ <i>r</i> ³⁶		
17. √169 <i>s</i> ¹⁸	18. $\sqrt{144f^{14}}$	19. √ <u>36<i>n</i>⁶</u>	20. $\sqrt{49h^{14}}$		

The Pyramids of Egypt are often called the first wonder of the world. This group of pyramids consists of Menkaura, Khufu, and Khafra. The largest of these is Khufu, sometimes called Cheops. During this time in history, each monarch had his own pyramid built to bury his mummified body. Cheops was a king of Egypt in the early 26th century B.C. His pyramid's original height is estimated to have been 482 ft. It is now approximately 450 ft. The estimated completion date of this structure was 2660 B.C.

- **21.** If the area of the base of Cheops' pyramid is 570,025 ft², what is the length of one of the sides of the ancient structure? (Hint: $s = \sqrt{A}$)
- **22.** If a replica of the pyramid were built with a base area of 625 in², what would be the length of each side? (Hint: $s = \sqrt{A}$)

		Date	Class		
California Standards NS2.4					
	mating Squa				
Each square root is Explain your answe		tegers. Name the inte	gers.		
1. $\sqrt{6}$		2. $\sqrt{20}$			
3. $\sqrt{28}$		4. $\sqrt{44}$			
••	-	ne nearest hundredth.			
5. $\sqrt{130}$ 6. $\sqrt{25}$		7. $\sqrt{208}$			
Use a calculator to	find each value.	Round to the neares	st tenth.		
8. $\sqrt{14}$	9. $\sqrt{42}$	10. $\sqrt{21}$	11. $\sqrt{47}$		
12. $\sqrt{58}$	13. $\sqrt{60}$	14. $\sqrt{35}$	15. √75		
Police use the formu	$r = 2\sqrt{5L}$ to a	pproximate the rate of	speed in miles per hours		
of a vehicle from its	skid marks, where	e L is the length of the	skid marks in feet.		
16. About how fast i	s a car going that	leaves skid marks of 8	0 ft?		
17. About how fast i	s a car going that	leaves skid marks of 2	45 ft?		
			2		
		n of the skid marks is L			
what would be the length of the skid marks from a vehicle traveling 80 mi/h?					

		Date	Cla	ass
fornia Standards 🔶 N	ractice			
	ne Real Numbers	3		
_	cations that apply to	each number.		
$-\frac{7}{8}$	2. √0.1	5	3. $\sqrt{\frac{18}{2}}$	
$\sqrt{45}$	5. –25		6. -6.75	
te if the numl $\sqrt{14}$	Der is rational, irrational,	onal, or not a real 9. <u>6.2</u>	number. 10. `	√ 4 9
<u>7</u> 20	12. −√81	13. $\sqrt{\frac{7}{9}}$	14	-1.3
d a real numb $7\frac{3}{5}$ and $7\frac{4}{5}$	ber between each pa 16. 6.45 a	ir of numbers. and $\frac{13}{2}$	17. $\frac{7}{8}$ and $\frac{1}{2}$	<u>9</u> 10
Give an exam	ple of a rational numb	per between $-\sqrt{4}$	and $\sqrt{4}$	
Give an exam	ple of an irrational nu	mber less than 0.		
Give an exam	ple of a number that i			

Date Class Name California Standards - MG3.3 LESSON Practice **4-9** The Pythagorean Theorem Use the Pythagorean Theorem to find each missing measure to the nearest tenth. 1. 2. 3. Α В Α 29 18 С b 10 а 12 A С С 21 В С В 10 6. 4. 5. A 23 С Α С h а 14 29 23 78 b В В B 30 C

Tell whether the given side lengths form a right triangle.

7. 12, 35, 37
 8. 9, 11, 14
 9. 20, 21, 29

10. A glider flies 8 miles south from the airport and then 15 miles east. Then it flies in a straight line back to the airport. What was the distance of the glider's last leg back to the airport?

Nan					_ Date _		C	lass	
Califo	ornia Standards Preparatio	_							
(4 X 4	5-1 Ratio								
Wri	ite the ratio in si	mple	st form.						
1.	15 cows to 25 sh	еер	2. 24 cars to	18 truc	cks	3.	30 knive	s to 27 spo	oons
4.	34 mice to 17 cat	ts	5. 12 noteboo	oks to :	20 pens	6.	44 stude	ents to 2 tea	achers
7.	9 feet to 84 inche	es	8. 6 yards to	18 fee	t	9.	12 feet to	o 12 inche	S
Sin	nplify to tell whe	ther	the ratios are e	equal.					
10.	$\frac{13}{39}$ and $\frac{16}{48}$	11.	$\frac{21}{49}$ and $\frac{28}{56}$	12.	$\frac{12}{28}$ and $\frac{1}{4}$	8	13.	$\frac{18}{27}$ and $\frac{10}{15}$	<u>)</u> 5
14.	$\frac{24}{27}$ and $\frac{27}{30}$	15.	$\frac{14}{10}$ and $\frac{35}{25}$	16.	$\frac{10}{32}$ and $\frac{2}{8}$	2 <u>5</u> 30	17.	$\frac{16}{48}$ and $\frac{15}{45}$	<u>.</u>
18.	18. Mrs. Walters wanted one daffodil plant for every 2 tulip plants in her garden. If she planted 20 daffodil bulbs, how many tulip bulbs did she plant?								
19.	9. In a survey, 9 out of 10 doctors recommended a certain medicine. If 80 doctors were surveyed, how many doctors recommended the medicine?								
20.	A molecule of so every 3 atoms of atoms of sodium Explain.	oxyg	en. Could a cor	npoun	d containi	ing 1	2		

Nar	ne		Date	Class
Califo	mia Standards Information MG1.3			
6.34	5-2 Rates and Unit Rates			
1.	Copper weighing 4480 kilograms has a vo meters. What is the density of copper?	olum	e of 0.5 cubic	
2.	Yoshi's yogurt contains 15 calories per ou calories are in an 8-ounce container of Yo		•	
3.	Emily earns \$7.50 per hour. How much do 3 hours?	bes s	she earn in	
Est	imate the unit rate.			
4.	43 apples in 5 bags	5.	\$71.00 for 8 hours	i
6.	146 students in 6 classes	7.	\$52.00 for 5 hours	
8.	7 miles in 64 minutes	9.	\$3.55 for 4 pounds	5
Det	ermine the lower unit price.			
10.	8.2 oz of toothpaste for \$2.99 or 6.4 oz of	toot	thpaste for \$2.49	
11.	a 3 lb bag of apples for \$2.99 or a 5 lb ba	g of	apples for \$4.99	
12.	16 oz bottle of soda for \$1.25 or 20 oz bo	ttle d	of soda for \$1.55	
13.	Mavis rides the bus every day. She bough the month of October for \$38.75. How mu- per day for the bus pass?			

Name		Date	Class			
California Standards 🛛 🖛 AF						
	actice					
5-3 Proportions						
Tell whether the r	atios are proportiona	al.				
1. $\frac{3}{4} \stackrel{?}{=} \frac{9}{12}$	2. $\frac{9}{24} \stackrel{?}{=} \frac{18}{48}$	3. $\frac{16}{24} \stackrel{?}{=} \frac{10}{18}$	4. $\frac{13}{25} \stackrel{?}{=} \frac{26}{50}$			
5. $\frac{10}{32}$ ≟ $\frac{16}{38}$	6. $\frac{20}{36} \stackrel{?}{=} \frac{50}{90}$	7. $\frac{20}{28} \stackrel{?}{=} \frac{28}{36}$	8. $\frac{14}{42} \stackrel{?}{=} \frac{16}{36}$			
Solve each proportion.						
9. $\frac{c}{15} = \frac{4}{10}$	10. $\frac{a}{6} = \frac{8}{12}$	11. $\frac{b}{20} = \frac{15}{12}$	12. $\frac{w}{6} = \frac{15}{10}$			

- **13.** Janessa bought 4 stamps for \$1.48. At this rate, how much would 10 stamps cost?
- **14.** A karate team had 6 girls and 9 boys. Then 2 more girls and 3 more boys joined the team. Did the ratio of girls to boys stay the same? Explain.
- **15.** A 30 kg weight is positioned 2 m from a fulcrum. At what distance from the fulcrum must a 40 kg weight be positioned to keep the scale balanced?
- **16.** An electrician charges \$51 for 3 hours of work. How much would the electrician charge for 2 hours of work?

Name	Date	Class	
California Standards MG1.3, AF	4.2, MG1.1		
5-4 Dimensio	nal Analysis		
 David takes 300 milligra grams is this? 	ums of medicine every day. H	⊣ow many	
	dash for his school's track to run in each 500-yard dash'		
3. Sean drinks six 12-ound of soda does he drink in	ce cans of soda a week. How n a week?	w many pints	
7 quarts of water. How	ires diluting the punch conc many gallons of water are re ccording to the directions?		
5. Jesse's dog Angel weig Angel weigh?	hs $18\frac{1}{2}$ pounds. How many	ounces does	
6. A roll of tape contains 3 millimeters of tape does	2.9 meters of tape. How mas the roll contain?	มny	
snatch and the clean and combined weights of the Weightlifting Competition Academy competed in t	lifts in the sport of weightlifti <i>nd jerk</i> . Winners are determi e two type of lifts. In the 200 n, Timothy Leancu from the he 94-kilogram weight class d 132.5 kg in the <i>clean and</i>	ined by the D2 Collegiate U.S. Naval s. He lifted	

was the combined weight of his lifts in grams?

ame		Date	Class
lifornia Standards Preparation fo			
LESSON Pract			
5-5 Similar	r Figures		
1. Are any of these tria	angles similar?		
$ \begin{array}{c} Q\\ 6 \text{ ft}\\ \hline & 30^{\circ}\\ \hline & 10.4 \text{ ft}\\ \end{array} $	$S = \frac{8.5 \text{ ft}}{45^{\circ}}$	V x 45° 6 ft W	$\begin{array}{c} 3 \text{ ft} \\ 60^{\circ} \\ 5.2 \text{ ft} \\ 30^{\circ} \\ Y \end{array}$
2. A photo is 12 in. wich scaled down to 9 in similar photo be?	le by 18 in. tall. If the ches, how tall should		
• •	e has a base of 20 cm 36 cm. How long are with base measuring	the legs	
. .	l's mascot is 18 in. wi proportionally to banne d to 63 in., what is the	er size. If	
5. Carol has a 24 cm : to $\frac{3}{4}$ of its size. What new photo?	< 36 cm photo that sh t are the dimensions		
	sketball court is 84 ft aws the court with a le	long and	
which is 60 ft \times 84 were changed to be	seum in Dearborn, Mi one of the world's lar ft. If a classroom proje in direct proportion w luseum, the dimensio	gest screens, ection screen vith the screen	

- 6. Drew wants to know the distance across the river. He drew the diagram and labeled it with the measurements he made. What is the distance across the river?
- 7. A warehouse is 120 feet tall and casts a shadow 288 feet long. At the same time, Julie casts a shadow 12 feet long. How tall is Julie?

Name		Date	Class
California Standards MG1.2			
J-I Sca	le Drawings ar	nd Scale Models	
The scale of a draw measurement.	ving is $\frac{1}{4}$ in. = 15 f	ft. Find the actual	
1. 9 in.	2. 12 in.	3. 14 in.	4. 15 in.
The scale is 2 cm = would be on a scal		ength each measure	ment
5. 150 m	6. 475 m	7. 350 m	8. 500 m
Tell whether each s size of an actual of 9. 1 m : 25 cm		arges, or preserves	the 11. 12 in. : 1 ft
Tennessee, is 12		anta, Georgia, and Na stance between these ?	
	ures 3.5 in. by 5 in.	the scale of $\frac{1}{4}$ in. = 1 on the blueprints. Wh	
	el, the window is 1-	ig. The actual house i 1 5 in. high. How many	
	factor is 8 in. : 250 f	ong, 2.8 in. wide, and It. What are the actua	

Name	Date	Class
California Chanderda, NC1 0		

1 1	22%	b	r	1	64% 70%		1009
0 <u>6</u> 100	m	<u>9</u> 25	<u>9</u> 20	t	c x	<u>4</u> 5	1
1. <i>a</i>	2. k)		3. <i>c</i>		4. d	
5. <i>m</i>	6. <i>r</i>			7. t		8. <i>x</i>	
ompare. W 9. $\frac{3}{4}$ 70	/rite <, >, or =)%	=. 10. 6	0%	<u>3</u> 5	1	1. 58%0.6	3
2. 0.09	15%	13. $\frac{2}{3}$	59	%	1	4. 0.45 40	.5%
	umbers from	least to	greates				
	95, 5 , 9.5%			16. $\frac{3}{8}$,	50%, 0.3	5, 38%	
5. 99%, 0.9							_

- **20.** Albert spends 2 hours a day on his homework and an hour playing video games. What percent of the day is this?
- **21.** Ragu ran the first 3 miles of a 5 mile race in 24 minutes. What percent of the race has he run?

	C	Date	Class
alifornia Standards NS1.3	ice		
	ting with Percents		
Estimate.			
1. 74% of 99	2. 25% of 39	3 . 5	52% of 10
4. 21% of 50	5. 30% of 61	6. 2	24% of 48
7. 5% of 41	8. 50% of 178		33% out of 62
Estimate. 10. 48% of 30 is about v	what number? 11. 26		oout what number?
2. 30% of 22 is about	- – – – – – – – – – – – – – – – – – – –	% of 63 is ab	
, , ,	oss pay is \$91. He must pay Estimate Rodney's weekly ta S.		
	ection, 492 students voted. I votes. About how many vot		
	lunch is \$14.10. Grace want w much will lunch cost Grac		
batteries they manu batteries, the super-	nd that on average about 6% facture are defective. Out of visor assumes that about 83 to determine if the manager	1,385 3 are 3s number	

	rnia Standards NS1.3		_ Date	Class	
	6-3 Finding Perce	ents			
Fin	d each percent.				
1.	What percent of 84 is 21?	2.	24 is what	percent of 60?	
3.	What percent of 150 is 75?	4.	What perce	ent of 80 is 68?	
5.	36 is what percent of 80?	6.	What perce	nt of 88 is 33?	
7.	19 is what percent of 95?	8.	28.8 is wha	t percent of 120?	
9.	What percent of 56 is 49?	10.	What perce	ent of 102 is 17?	
11.	What percent of 94 is 42.3?	9 12.		percent of 75?	
13.	Daphne bought a used car payment of \$1840. Find the that is the down payment.				
14.	Tricia read $\frac{1}{4}$ of her book or read 36% of the book. On V the book. She finished the k of the book did she read on	Vednesday, she r book on Thursday	ead 0.27 of	ent	
15.	An airplane traveled from B a stop in St. Louis. The plar which is 230% of the distan Find the distance from Bost	ne traveled 2410 r ce from Boston to	niles altoge o St. Louis.		
16.	The first social studies test test had 220% as many que number of questions on the	estions as the firs			

Name	Date	Class
California Standards NS1.3		

East Practice 6-4 <i>Finding a Number</i>	When the Percent Is Known
Find each number to the nearest tent	h.
1. 40% of what number is 18?	2. 28 is 35% of what number?
3. 21 is 60% of what number?	4. 25% of what number is 19?
5. 40% of what number is 22?	6. 41 is 50% of what number?
7. 50 is 15% of what number?	8. 0.3% of what number is 24?
9. 36 is 30% of what number?	10. 26 is 75% of what number?
11. 12.5% of what number is 14?	12. 25% of what number is 28.25?
13. 27 is $33\frac{1}{3}\%$ of what number?	14. 54 is 150% of what number?

- **15.** There were 546 students at a school assembly. This was 65% of all students who attend Content Middle School. How many students attend Content Middle School?
- **16.** On his last test Greg answered 64 questions correctly. This was 80% of the questions. How many questions were on the test?
- **17.** The price of a jacket at store A is \$48. If the price at store B is 5.5% higher, what is the price difference? What is the cost of the jacket at store B?
- 18. Carla has finished swimming 14 laps in swim practice. This is 70% of the total number of laps she must swim. How many more laps must Carla swim to complete her practice?

Copyright © by Holt, Rinehart and Winston. All rights reserved.

Name			Date	Class
California Standards NS1.6, 🖛	NS1.7			
	•	ent of Increa		
Find each percent in	crease or o	decrease to the	nearest perc	cent.
1. from 16 to 20	2.	from 30 to 24	3.	from 15 to 30
4. from 35 to 21	5.	from 40 to 46	6.	from 45 to 63
7. from 18 to 26.1		from 24.5 to 21.5	56 9.	from 90 to 72
10. from 29 to 54		from 42 to 92.4		from 38 to 33
13. from 64 to 36.4		from 78 to 136.5		from 89 to 32.9
16. Mr. Havel bought a What was the percent				ar?
17. A computer store sells it for \$91.20. price?	-			
18. A manufacturing c a new product line What is the percer	and must	add 81 more emp	oloyees.	s?
19. Richard earns \$27 What is Richard's			3% raise.	
20. Marlis has 765 ca She sells 153 of the decrease in the nu	ne cards. W	hat is the percent	t of	

Class

Name

California Standards ••••• NS1.7, NS1.3

LESSON Practice

6-6 Commission, Sales Tax, and Profit

Complete the table to find the amount of sales tax for each sale amount to the nearest cent.

1.	Sale amount	5% sales tax	8% sales tax	6.5% sales tax
	\$67.50			
	\$98.75			
	\$399.79			
	\$1250.00			

Complete the table to find the commission for each sale amount to the nearest cent.

2.	Sale amount	6% commision	9% commision	8.5% commission
	\$475.00			
	\$2450.00			
	\$12,500.00			
	\$98,900.00			

- **3.** Alice makes bracelets and sells them for \$5 each. If it costs her \$2 to make a bracelet, what percent of the money she makes is profit?
- **4.** Phillipe works for a computer store that pays a 12% commission and no salary. What will Phillipe's weekly sales have to be for him to earn \$360?
- **5.** The purchase price of a book is \$35.85. The sales tax rate is 6.5%. How much is the sales tax to the nearest cent? What is the total cost of the book?
- 6. Who made more commission this month? How much did she make? Salesperson A made 11% of \$67,530. Salesperson B made 8% of \$85,740.
- **7.** Jon earned \$38,000 last year. He paid \$6,840 towards entertainment. What percent of his earnings did Jon pay in entertainment expenses?
- **8.** The Cougars won 62% of their games. They won 93 games. How many games did they lose?

Nan	ne		Date	Class
Califo	nnia Standards 🖝 NS1.7			
	LESSON Practice			
6.54	5-7 Applying Simple and	d Com	pound Inter	est
	d the missing value.			
1.	principal = \$125	2.	principal = ?	
	rate = 4%		rate = 5%	
	time = 2 years		time = 4 years	
	interest = ?		interest = \$90	
3.	principal = \$150	4.	principal = \$200)
	rate = 6%		rate = ?%	
	time = ? years		time = 3 years	
	interest = \$54		interest = \$30	
5.	principal = \$550	6.	principal = ?	
	rate = ?%		rate = $3\frac{1}{4}\%$	
	time = 3 years		time = 2 years	
	interest = $$57.75$		interest = \$63.0	5
7.	Kwang deposits money in an account interest. He earned \$546 in interest 2 did he deposit?			
8.	Simon opened a certificate of deposit from his bonus check. The bank offere 3 years of deposit. Simon calculated t \$87.75 interest in that time. How much to open the account?	ed 4.5% hat he v	interest for vould earn	
9.	Douglas borrowed \$1000 from Patricia repay her \$1150 after 3 years. What w rate of the loan?	-		
10.	Samantha invested \$2000 in a saving 5% interest compounded semi-annual the investment after 6 years.			

Name	Date	Class
California Standards Preparation for 🖛 AF3.3		
7-1 The Coordinate Plane		
Identify the quadrant that contains each point	• <i>Y</i>	,
1. <i>A</i>	4	D
2. <i>B</i>	C 2+	

- **3.** *C* _____
- **4.** *D* _____

Plot each point on a coordinate plane.

- **5.** (-4, 0)
- **6.** (3, −3)
- **7.** (1, 4)
- **8.** (-5, -1)
- **9.** (-2, 2)
- **10.** (-1, -4)

Give the coordinates of each point.

 11. P

 12. Q

 13. R

 14. S

 15. T

 16. U

 17. W

 18. X

Name _____

Date Class

California Standards Preparation for -AF3.3

LESSON Practice

Find the output for each input.

1. y = 5x - 1

2. $y = -2x^2$

Input	Rule	Output
x	5 <i>x</i> – 1	У
-2		
0		
3		
6		

Input	Rule	Output
x	$-2x^{2}$	У
-2		
2		
3		
4		

3. y = -2x + 5

Input	Rule	Output
X	-2x + 5	У
-2		
-1		
0		
1		
2		

4.	y	=	X	_	2
----	---	---	---	---	---

Input	Rule	Output
X	<i>x</i> – 2	У
-2		
-1		
0		
1		
2		

Determine if each relationship represents a function.

5. $y = \frac{1}{3}x - \frac{2}{5}$

6.	x	1	2	1	2
	У	6	5	-6	-5

7	
	=

x	У
0	0
1	-1
2	-8
3	-27
4	-64

Date Class

California Standards - AF3.3. AF1.1

LESSON Practice

7-3 Graphing Linear Functions X . .

Graph each linear function.

1.
$$y = -x - 5$$

Input	Linear Equation	Output	Ordered Pair
x	y=-x-5	У	(<i>x</i> , <i>y</i>)
-4			
-2			
0			

2. y = 2x - 1

Input	Linear Equation	Output	Ordered Pair
x	y=2x-1	У	(<i>x</i> , <i>y</i>)
-2			
0			
1			

3. The temperature of a swimming pool is 75°F. When the pool heater is turned on, the temperature rises 2°F every hour. What will the temperature be after 3 hours? Make a function table to answer the question.

4. Mel's Pizza Place charges \$15.00 for a large cheese pizza plus \$1.25 for each additional topping. What will be the cost of a large pizza with 3 additional toppings? Make a function table to answer the question.

Date Class Name

California Standards AF3.1

LESSON Practice

7-4 Graphing Quadratic Functions

Create a table for each quadratic function, and use it to make a graph.

3. Complete the table for the values x = -3, x = 0, and x = 3.

	x = -3	<i>x</i> = 0	<i>x</i> = 3
$y = x^2 - 2x + 1$			
$y = x^2 - 6$			
$y = x^2 - x + 3$			

4. The function $y = -4.9t^2$ gives the distance in meters that an object will fall toward Earth in *t* seconds. Find the distance an object will fall in 1, 2, 3, 4, and 5 seconds. (Note that the distance traveled by a falling object is shown by a negative number.)

Name	Date	Class
California Standards AF3.1		

LESSON Practice

7-5 *Cubic Functions*

Complete the table for each cubic function, and use it to graph the function.

 x
 $x^3 - 4$ y

 -2
 -2

 -1
 -2

 0
 -2

 2
 -2

2. $y = x^3 + 3$

x	$x^{3} + 3$	У
-2		
-1		
0		
1		
2		

Tell which of the following could be the graph of each equation. y = 2x, $y = 2x^2$, $y = -2x^2$, $y = 2x^3$

Name _____ Date _____ Class _____

California Standards - AF3.3

LESSON Practice

7-6 Rate of Change and Slope

Determine whether each set of data has a constant or variable rate of change.

1.	X	0	3	4	5	7
	у	2	5	6	7	9

2.	X	0	4	6	7	8
	y	3	11	13	15	18

3.	X	1	3	5	7	11]
	у	2	3	4	5	7	

4.	X	3	5	7	10	13
	у	0	4	8	11	14

Find the slope of each line.

Find the value of a.

а

ð.

7.

Slope: ___

Name	Da	te Class
California Standards AF3.4, AF		
T-7 Finding S	-	
Find the slope of the line	that passes through each	pair of points.
1. (-2, -8), (1, 4)	2. (-2, 0), (0, 4)	3. (0, 4), (4, 4)
4. (3, -6), (2, -4)	5. (-3, 4), (3, -4)	6. (3, 0), (0, -6)
7. (3, 2), (3, -2)	8. (-4, 4), (3, -1)	9. (-5, -6), (3, -6)
10. (-6, -9), (4, -1)	11. (7, -1), (6, 2)	12. (-2, -1), (-3, -6)

13. The table shows the distance Ms. Long had traveled as she went to the beach. Use the data to make a graph. Find the slope of the line and explain what it shows.

Time (min)	Distance (mi)
8	6
12	9
16	12
20	15

Name	Date	Class	
California Standards AF1.5			

Practice 7-8 Interpreting Graphs

1. The gas tank in Karen's car was full. Karen drove the car until only $\frac{1}{4}$ of the tank was full. Karen filled up the tank again and drove the car until $\frac{1}{4}$ of the tank was full. Which graph best shows the story? Circle the letter of your answer.

2. An elevator started at the ground floor. It went up to the sixth floor and stopped, then went to the fourth floor and stopped, and finally returned to the ground floor. Which graph best shows the story? Circle the letter of your answer.

3. Maxine biked 6 miles from her house to the park. She played some softball. Then she biked 4 miles farther to the movie theater. After watching a movie, Maxine returned home. Sketch the graph so that it shows the distance Maxine is from home compared to the time.

Name	Date	Class	
California Standards AF4.2, AF3.3, AF3.4			

LESSON Practice

7-9 Direct Variation

Make a graph to determine whether the data sets show direct variation.

- 2. Write the equation of direct variation for Exercise 1.
- **3.** Reynaldo ordered 12 large pepperoni pizzas. The total cost was \$101.40. Write a direct variation function for the cost of one large pepperoni pizza. How much would 5 large pepperoni pizzas cost?
- **4.** Randall earns \$460 for working a 40-hour work week. Write a direct variation function for the amount that Randall earns in one hour. How much money would Randall earn if he only worked 28 hours in one week?
- 5. The table shows the length and width of various U.S. flags. Determine whether there is direct variation between the two data sets. If so, find the equation of direct variation.

Length (ft)	2.85	5.7	7.6	9.88	11.4
Width (ft)	1.5	3	4	5.2	6

Nar	ne	Date	Class
Calif	ornia Standards Preparation for MG3.1		
	LESSON Practice		
6.14	8-1 Points, Lines, Planes	s, and Angles	
Us	e the diagram to name each figure.		
1.	four points		4
			ÎR
2.	a line	× /	S
3.	a plane	Ŵ	T
4.	three segments	5. four rays	
	e the diagram to name each figure. a right angle	►_N	1 N 1
7.	two acute angles	≺ S	×
8.	two obtuse angles	R	P
9.	a pair of complementary angles	10. three pairs o	of supplementary angles

Street. Carter Street is neither p nor perpendicular to Addison St Draw and label a map showing streets in the space provided.
Copyright $\ensuremath{\mathbb{G}}$ by Holt, Rinehart and Winston. All rights reserved.

Date Class Name California Standards • MG3.6 LESSON Practice **8-2** *Geometric Relationships* . X.A. 🚽 Identify two lines that have the given relationship. **1.** parallel lines **2.** perpendicular lines 3. skew lines Identify two lines that have the given relationship. 4. parallel lines **5.** perpendicular lines 6. skew lines Identify two planes that appear to have the given relationship. **7.** parallel planes 8. perpendicular planes **9.** neither parallel nor perpendicular R Identify two planes that appear to have the given relationship. **10.** parallel planes **11.** perpendicular planes **12.** neither parallel nor perpendicular M **13.** In Center City, Grove Street is parallel to Market Street. Addison Street is perpendicular to Grove barallel treet. the

59

F

C

Κ

0

Н

G

Ν

Name		Date	Class
California Standards F	Review of 🖛 6MG2.2, 6MG2.1		
ELOUDIN	Practice		
8-3	Angle Relations	hips	
In the figure,	∠1 and ∠3 are vertic	al angles, and $\angle 2$ and	$\angle 4$ are vertical angles.
		K T	
		123	
		4	
1. If m∠2 =	110°, find m∠4.	2. If m∠1 =	<i>n</i> °, find m∠3.
-	line <i>m</i> ∥line <i>n</i> . Find tl	ne measure of each	1 1/00
angle.			$\begin{array}{c} 4 \\ \hline 2 \\ \hline 3 \end{array} \longrightarrow m$
3. ∠1	4. ∠2	5. ∠5	E E
			$\leftarrow \frac{5}{8} \xrightarrow{0} n$
6. ∠6	7. ∠8	8. ∠7	*p
In the figure, angle.	line <i>a</i> ∥line <i>b</i> . Find th	e measure of each	TC TC
9. ∠2	10. ∠5	11. ∠6	$2^{1}_{3}4$
9. <i>L</i> 2	10. <u>2</u> 5	11. 20	756 a
			▲ 137°
			*b
12. ∠7	13. ∠4	14. ∠3	

11. The second angle in a triangle is one third as large as the first. The third angle is two thirds as large as the first angle. Find the angle measures. Draw a possible picture of the triangle.

10 in.

М

Κ

Name	Date	Class	
California Standards MG3.2. 🖛 AF3.3			

LESSON Practice

8-5 Coordinate Geometry

Determine if the slope of each line is positive, negative, 0, or undefined. Then find the slope of each line.

8. Which lines are perpendicular?

Graph the quadrilateral with the given vertices. Write all the names that apply to the quadrilateral.

Find the coordinates of the missing vertex.

10. rhombus *ABCD* with *A*(0, 4), *B*(4, 1), and *C*(0, -2)

Name		Date	Class
California Standards 🛛 🗣 MG3.4			
LESSON Practice			
8-6 Congruent F	olygons		
Write a congruence statemen	t for each pair of	polygons.	
1. J $P = 6 Q$ $R = 55^{\circ} 10$ $R = 55^{\circ} 10$ $L = 55^{\circ} K$ T	2.	$ \begin{array}{cccc} B & 15 & D \\ 100^{\circ} & 88^{\circ} \\ 5 & & 8 \\ \kappa & 87^{\circ} & 85^{\circ} \\ \kappa & 21 & L \end{array} $	$H = \frac{15}{100^{\circ}} J$ $8 = 5$ $R = \frac{85^{\circ}}{21} P$
3. $J = D = B = \frac{1}{108^{\circ}} \frac{1}{72^{\circ}} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{72^{\circ}} \frac{1}{108^{\circ}} \frac{1}{5} \frac{1}{72^{\circ}} \frac{1}{8} \frac{1}{72^{\circ}} \frac{1}{8} \frac{1}{72^{\circ}} \frac{1}{8} \frac{1}{8} \frac{1}{72^{\circ}} \frac{1}{8} $	4. F 3/ E	$ \begin{array}{c} A & 8 & B \\ 5 & 140^{\circ} & 11 \\ 145^{\circ} & 125^{\circ} \\ 15^{\circ} & 135^{\circ} & 7 \\ 10 & D \\ \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
In the figure, triangle $PRT \cong$	triangle <i>FJH</i> .		
5. Find <i>a</i> .	6. Find <i>b.</i>	15 40° 12	F $4x^{\circ}$ 3a $b+6$
7. Find <i>c</i> .	8. Find <i>x.</i>	$T \frac{25^{\circ} - 105^{\circ}}{10} R$	$\int \frac{y^{\circ}}{c} + H$ $(z+20)^{\circ}$
9. Find <i>y.</i> 1	0. Find <i>z.</i>		

Name	Date	_ Class
California Standards MG3.2		
LESSON Practice		
8-7 Transformations		
Identify each type of transformation.		
1. <i>ny</i> <i>y</i> <i>y</i> <i>y</i> <i>y</i> <i>y</i> <i>y</i> <i>y</i> <i></i>		

Graph each translation.

3. 5 units to the left and 2 units up

4. 4 units to the right and 3 units up

Graph the reflection of each figure across the indicated axis. Write the coordinates of the vertices of the image.

5. *x*-axis

7. Triangle *DEF* has vertices at D(-2, -1), E(-2, -3), and F(-5, -3). Rotate $\triangle DEF$ 90° clockwise about the vertex *D*. 6. y-axis

Name	Date	Class
California Standards Extension of MG3.2		
LESSON Practice		
8-8 Tessellations		
1. Create a tessellation with quadrilateral <i>ABCD</i> .		

2. Use rotations to create a variation of the tessellation in Exercise 1.

3. Create a tessellation with hexagon ABCDEF.

4. Use rotations to create a variation of the tessellation in Exercise 3.

Graph and find the area of each figure with the given vertices.

6. Find the perimeter and area of the figure.

Name	Date	Class
California Standards MG2.1, MG3.2	Trionglos and	Tropozoido
9-2 Perimeter and Area of	-	-
Find the missing measurement for each the perimeter.	figure with the give	n
1. <i>P</i> = 22.8 cm	2. <i>P</i> = 11 <i>c</i> + 5 m	i
3.9 cm	(2 <i>c</i>) n	ni
5.6 cm 5.6 cm	?	(2 <i>c</i> + 1) mi
?	(4 <i>c</i> + 2) mi	
3. $P = 54$ units 14 ?	4. <i>P</i> = 34 units	11.6
22 Graph and find the area of each figure wi	th the given vertice	- 6.2 es.
5. (-1, 3), (4, 3), (4, -4), (-4, -4)	6. (-1, 2), (-4, -	2), (4, -2)
$\begin{array}{c c} & & y \\ \hline & & 4 \\ \hline & & 2 \\ \hline & & -4 \\ \hline & & -2 \\ \hline \end{array}$	 4 2 -4 -2 	×

7. The two shortest sides of a pennant shaped like a right triangle measure 10 inches and 24 inches. Hank wants to put colored tape around the edge of the pennant. How many inches of tape does he need?

Name	Date	Class
California Standards MG3.1		
Practice 9-3 <i>Circles</i>		
Name the parts of circle <i>A</i> .		
		CB
1. radii		
2. diameters	D	
3. chords		FG
Name the parts of circle <i>H</i> .		
4. radii		
5. diameters	_	
6. chords	F	
Name the parts of circle <i>C</i> .		
7. radii		A
8. diameters		
9. chords		F G H
Name the parts of circle <i>Z</i> .		J
10. radii		TU
11. diameters	V	
12. chords	I	
		x
Use the circle graph.	New 7e	aland Population
13. The circle graph shows the distribution of ethnic groups in New Zealand. Find the central angle measure of the sector that shows the percent of New Zealanders who		aori 9.7% Asian/other 7.4% Other European 4.6% Pacific Islander
are Maori.		3.8%
	New Ze	ealand European

				Date		C	lass_	
Calif	ornia Standards	MG2.1 Practice						
(4.14)		Circumference and						
		umference of each circle, enth. Use 3.14 for π .	both in	terms of	π and	d to		
1.	circle with	radius 10 in.	2.	circle wi				
3.		diameter 18 m	4.	circle wi	th radi			
5.		radius 11.5 in.	- 6.	circle wi	th diar			
	d the area	of each circle, both in ter . Use 3.14 for π .	rms of $ au$	and to	the			
7.	circle with	radius 9 in.	8.	circle wi			-	
9.	circle with	radius 20 ft	10.	circle wi	th diar			
11.	circle with	diameter 15.4 m	12.	circle wi	th radi	ius 22	yd	
13.	passes the area and o	ircle with center (0, 0) that rough (0, -3). Find the circumference, both in - and to the nearest tenth. For π .	-	-4 -2	<pre></pre>	2	4	

14. A wheel has a radius of $2\frac{1}{3}$ feet. About how far does it travel if it makes 60 complete revolutions? Use $\frac{22}{7}$ for π .

 Name
 Date
 Class

California Standards
 MG2.2

9-5 Area of Composite Figures

Find the shaded area. Round to the nearest tenth, if necessary.

8. Suki designed the logo shown at right for a publishing company. Find the area of the logo to the nearest tenth of a square centimeter.

Name California Standards MG2.2	Date	Class
Practice 9-6 Area of Irro	egular Figures	
Find the area of each figure	е.	
1.	2.	3.
4.	5.	6.
Use a composite figure to	estimate the shaded area.	
7.	8.	9.

The figure shows an irregular area that is part of Elena's garden. She wants to

10. Estimate the area that is to be covered with pebbles.

11. It costs \$3 per square foot to cover an area of the garden with pebbles. How much should Elena plan to spend on the pebbles? Explain.

cover the area with pebbles.

Nam	e		Date	Class						
	California Standards Preparation for MG2.1									
	LESSON Practice 10-1 Three-Dimensional Figures									
(2.54)		nens	ional Figures							
Des	cribe the base or base	s of ea	ach figure. Then name	the figure.						
1.		2.		3.						
4.		5.		6.						

Classify each figure as a polyhedron or not a polyhedron. Then name the figure.

- **10.** A cylinder has a radius of 6 ft and a height of 25 ft. Explain whether tripling the height will triple the volume of the cylinder.
- 11. Contemporary American building bricks are rectangular blocks with the standard dimensions of about 5.7 cm by 9.5 cm by 20.3 cm. What is the volume of a brick to the nearest tenth of a unit?
- **12.** Ian is making candles. His cylindrical mold is 8 in. tall and has a base with a diameter of 3 in. Find the volume of a finished candle to the nearest tenth of a unit.

Name		Date	Class			
California Standards Extension of MG2.1						
LESSON Practice						
10-3 Volume of	Pyramids and	Cones				
Find the volume of each figure to the nearest tenth. Use 3.14 for π .						
1. 9 ft 9 ft	2. 15 in	. 3. ∢	20.5 m 12.4 m			

16 ft

18 ft

18 ft

6.

17[']cm

16 cm

- **7.** The base of a regular pyramid has an area of 28 in². The height of the pyramid is 15 in. Find the volume.
- **8.** The radius of a cone is 19.4 cm and its height is 24 cm. Find the volume of the cone to the nearest tenth.

5.

- **9.** Find the volume of a rectangular pyramid if the height is 13 m and the base sides are 12 m and 15 m.
- **10.** A funnel has a diameter of 9 in. and is 16 in. deep. Use a calculator to find the volume of the funnel to the nearest hundredth.
- **11.** A square pyramid has a height 18 cm and a base that measures 12 cm on each side. Find the volume.

4.

23 cm

20 cm

19 cm

California Standards MG2.1, MG2.2, MG2.3

Practice

10-4 Surface Area of Prisms and Cylinders

Find the surface area of each figure. The figure is made up of congruent cubes.

- **11.** Find the surface area to the nearest tenth of a cylinder 61.7 ft tall that has a diameter of 38 ft.
- **12.** Henry wants to paint the ceiling and walls of his living room. One gallon of paint covers 450 ft². The room is 24 ft by 18 ft, and the walls are 9 ft high. How many full gallons of paint will Henry need to paint his living room?
- **13.** A rectangular prism is 18 in. by 16 in. by 10 in. Explain the effect, if any, tripling all the dimensions will have on the surface area of the figure.

California Standards Extension of MG2.1

Date _____

LESSON Practice

10-5 Surface Area of Pyramids and Cones

Find the surface area of each figure to the nearest tenth. Use 3.14 for π .

Name California Standards Extension of MG2.		_ Date	Class					
LESSON Practic 10-6 Spheres	e							
Find the volume of each sphere, both in terms of π and to the nearest tenth. Use 3.14 for π .								
1. <i>r</i> = 9 ft	2. <i>r</i> = 21 m	3. d :	= 30 cm					
4. <i>d</i> = 24 cm	5. <i>r</i> = 15.4 in.	6. <i>r</i> =	= 16.01 ft					
Find the surface area of the nearest tenth. Use 3.1	-	terms of π and t	0					

13. In the sport of track and field, a field event is the shot put. This is a game in which a heavy ball or shot is thrown or put for distance. The shot itself comes in various sizes, weights and composition. Find the volume and surface area of a shot with diameter 5.5 cm both in terms of π and to the nearest tenth.

Nar	me	Date	Class
Calif	fornia Standards MG2.3		
	Practice		
61.	10-7 Scaling Three-Dime	ensional Figures	
A 1	10 in. cube is built from small cubes	s. each 2 in. on a side.	
	ompare the following values.	-,	
1.	. The side lengths of the two cubes		
2.	. The surface area of the two cubes		
3.	. The volumes of the two cubes		
٨٥	9 cm cube is built from small cubes	and 3 cm on a side	
	ompare the following values.		
	. The side lengths of the two cubes		
4.			
5	The surface area of the two cubes		
э.	. The surface area of the two cubes		
6.	. The volumes of the two cubes		
_		2	
7.	. The surface area of a bucket is 6176	4	ce
	area of a similar bucket that is smalle	er by a scale of $\frac{1}{4}$?	
8	. The volume of a cone is 316 in ³ . Wh	at is the volume of a sir	milar
0.	cone that is larger by a scale of 3?		mai
9.	. It takes a machine 40 seconds to fill		CH .
	measuring 10 in. How long will it take cubic box with sides measuring 15 ir		nii a
	oubic box with sides measuring 10 ll	1. i	

Ν	ar	ne
---	----	----

California Standards SDAP1.1

Practice 11-1 Line Plots and Stem-and-Leaf Plots

The table shows the heights of students in Ms. Blaire's class. Use the table for Exercises 1 and 2.

Height (in.)					
Males	60, 45, 48, 57, 62, 59, 57, 60, 56, 58, 61, 52, 55				
Females	49, 52, 56, 48, 51, 60, 47, 53, 55, 58, 54				

1. Make a line plot of the data.

- 2. Which height occurred the greatest number of times? _____
- 3. Make a stem-and-leaf plot of the data.

- 4. How many of the students were less than 50 in. tall?
- 5. Use the given data to make a back-to-back stem-and-leaf plot.

NBA Midwes	st Divis	ion 200	0–2001 Fina	I Stanc	lings	Wins	Losses
NBA Team	Wins	Losses	NBA Team	Wins	Losses		
San Antonio Spurs	58	24	Houston Rockets	45	37	Key:	
Utah Jazz	53	29	Denver Nuggets	40	42		
Dallas Mavericks	53	29	Vancouver Grizzlies	23	59		
Minnesota Timberwolves	47	35					

Copyright $\textcircled{\mbox{\scriptsize o}}$ by Holt, Rinehart and Winston. All rights reserved.

Name	Date	Class	
California Standards 🛛 🛶 SDAP1.3			
11-2 Mean, Median, Mode, a	nd Range		
Find the mean, median, mode, and range of	of each data se	t.	
1. 46, 35, 23, 37, 29, 53, 43	2. 72, 56, 47,	69, 75, 48, 56, 57	
3. 19, 11, 80, 19, 27, 19, 10, 25, 15	4. 7, 8, 20, 6,	9, 11, 10, 8, 9, 8	
5. The line plot shows the number of hours in one week. Does the mean or median b answer.			
x x <++++++++++++++++ 0 2 4 6 8 10 12	<i>X X X</i> <i>X X X</i> <i>X X X</i> 14 16	x x x x ++++++++++++++++++++++++++++++++++++	

6. 14, 16, 13, 15, 5, 16, 12

7. 48, 46, 52, 92, 57, 58, 52, 61, 56

Name California Standards SDAP1.1, SDAP1.3 LESSON Practice	_ Date	Class
11-3 Box-and-Whisker Plots		
Find the lower and upper quartiles for each d	ata set.	
1. 37, 48, 56, 35, 53, 41, 50 2.	18, 20, 34, 33, 16,	44, 42, 27
lower quartile:	lower quartile:	
upper quartile:	upper quartile:	
Use the given data to make a box-and-whisk	er plot.	
3. 55, 46, 70, 36, 43, 45, 52, 61		
< } } } < <p></p>	+ + + +	 _>
4. 23, 34, 31, 16, 38, 42, 45, 30, 28, 25, 19, 32	e, 53	
< + + + + + + + + + + + + + + + + + + +		_
Use the box-and-whisker plots to compare the	e data sets.	
Data set 1●	•	
Data set 2	•	
 < + + + + + + + + + + + + + + + + + + +	40 50	
5. Compare the medians and ranges.		

6. Compare the ranges of the middle half of the data for each set.

California Standards SDAP1.2

LESSON **Practice** 11-4 Scatter Plots

1. Use the given data to make a scatter plot.

Tall Buildings in the U.S.

Building	Stories	Height (meters)
Sears Tower	110	442
Empire State Building	102	381
Bank of America Plaza	55	312
Library Tower	75	310
Key Tower	57	290
Columbia Seafirst Center	76	287
NationsBank Plaza	72	281
NationsBank Corporate Center	60	265

Tall Buildings in the U.S.

Date Class

Write positive, negative, or no correlation to describe each relationship.

4. Use the data to predict the percent of Americans owning a home in 1955.

Percent of Americans Owning Homes

Year	1950	1960	1970	1980	1990
Percent	55.0%	61.9%	62.9%	64.4%	64.2%

According to the data, about _____% of Americans owned a home in 1955.

Name						Da	ite		Class
California St	andards Review of 🐠	- 6SI	DAP3.3						
	LESSONPract11-5Proba		-						
that any	re the results o one with a grac ity for the indica	le o	of more	than 7					
	Grade		65	70	80	90	100		
	# of Student	ts	5	3	12	10	2		
1. <i>P</i> (70))	2. /	P(100)		3	3. <i>P</i> (80)		4. <i>P</i> (passing)
5. <i>P</i> (gr	ade > 80)	- 6. /	P(60)		- 7	7. <i>P</i> (fai	ling)	-	8. <i>P</i> (grade ≤ 80)
		_			-				

A bowling game consists of rolling a ball and knocking up to 5 pins down. The number of pins knocked down are then counted. The table gives the probability of each outcome.

Number of Pins Down	0	1	2	3	4	5
Probability	0.175	0.189	0.264	0.205	0.132	0.035

9. What is the probability of knocking down all 5 pins?

10. What is the probability of knocking down no pins?

11. What is the probability of knocking down at most 2 pins?

12. What is the probability of knocking down at least 2 pins?

13. What is the probability of knocking down more than 3 pins?

California Standards Review of 4-65DAP3.2 and 65DAP3.3

LESSON Practice

EXPERIMENTAL Probability

1. A number cube was thrown 150 times. The results are shown in the table below. Estimate the probability for each outcome.

Outcome	1	2	3	4	5	6
Frequency	33	21	15	36	27	18
Probability						

A movie theater sells popcorn in small, medium, large and jumbo sizes. The customers of the first show purchase 4 small, 20 medium, 40 large, and 16 jumbo containers of popcorn. Estimate the probability of the purchase of each of the different size containers of popcorn.

2. *P*(small container)

3. *P*(medium container)

Date

4. *P*(large container)

5. *P*(jumbo container)

Janessa polled 154 students about their favorite winter sport.

Т

Outcome	Frequency
Skiing	46
Sledding	21
Snowboarding	64
Ice Skating	14
Other	9

- 6. Use the table to compare the probability that a student chose snowboarding to the probability that a student chose skiing.
- 7. Use the table to compare the probability that a student chose ice skating to the probability that a student chose sledding.
- 8. The class president made 75 copies of the flyer advertising the school play. It was found that 8 of the copies were defective. Estimate the probability that a flyer will be printed properly.

Holt Mathematics

ame							CI	ass	
lifornia Standards Review			⊨ 6SDAF	93.3, and 6	SDAP3.4				
LESSON TH			ohah	ility					
						h a			
n experiment co ind the probabi			•	Tair nu	imper cu	be.			
1. <i>P</i> (3)	-				2. <i>P</i> (7)				
3. <i>P</i> (1 or 4)				-	4. <i>P</i> (not {	5)			
5. <i>P</i> (< 5)				(6. <i>P</i> (> 4)				
7. <i>P</i> (2 or odd)					8. <i>P</i> (≤ 3)	1			
n experiment c nd the probabi 9. <i>P</i> (total shown	lity of e	ach eve	ent.				<i>P</i> (total	shown :	= 9)
 2. <i>P</i> (total shown	= 2)	13.	– P(total	shown	= 4)	14.	P(total	shown :	= 13)
5. <i>P</i> (total shown	> 8)	16.	––––––––––––––––––––––––––––––––––––––	shown	≤ 12)	17.	P(total	shown ·	< 7)
3. A bag contain quarters shou drawing a dim	Id be ad						у 		
 In a game two first move, you probability that 	u need to	o roll a t	otal of	6, 7, or	8. What	is the			
pyright © by Holt, Rinehart and \	Vinston.			85				Holt M	athemat

Name		Dat	e	Class
California Standards Review of	-	•••• 6SDAP3.3, and 6SDAP3.	4	
LESSON Pract				
III-8 Indepe	ndent a	and Dependent	Events	
Determine if the events	s are dep	endent or independent	dent.	
1. choosing a tie and s	hirt from	the closet		
2. choosing a month ar	nd tossinę	g a coin		
 rolling two fair number again if you received cubes on the first rol 	I the sam			
An experiment consist tossing a fair coin.	s of rolli	ng a fair number cu	ibe and	
 Find the probability of on the dime. 	of getting	a 5 on the number o	ube and t	ails
5. Find the probability of cube and heads on t	· ·	an even number on	the numb	er
 Find the probability of heads on the dime. 	of getting	a 2 or 3 on the num	ber cube	and
A box contains 3 red m marble. The marbles ar are not replaced. Find	e selecte	ed at random, one a		and
7. P(blue and red)	8.	<i>P</i> (white and blue)	9.	P(red and white)
			_	
10. <i>P</i> (red and white and blue)	11.	<i>P</i> (red and red and blue)	12.	<i>P</i> (red and blue and blue)
13. <i>P</i> (red and red and red)	14.	<i>P</i> (white and blue and blue)	15.	<i>P</i> (white and red and white)
			-	

12-1 Polynom		
	expression is a monomial.	$2n^2$
1. −135 <i>x</i> ⁵	2. 2.4 <i>x</i> ³ <i>y</i> ¹⁹	3. $\frac{2p^2}{q^3}$
4. $3r^{\frac{1}{2}}$	5. 43 <i>a</i> ² <i>b</i> ^{6.1}	6. $\frac{7}{9}x^2yz^5$
lassify each expression trinomial, or not a polyr 7. $-8.9xy + \frac{6}{y^5}$	as a monomial, a binomia omial. 8. $\frac{9}{8}ab^8c^2d$	I , 9. x ⁸ + x + 1
0. −7 <i>pq</i> ^{−2} <i>r</i> ⁴	11. $5n^{15} - 9n + \frac{1}{3}$	12. r ⁸ – 5.5r ⁷⁵
ind the degree of each p	olynomial.	
3. 7 – 14 <i>x</i>	14. $5a + a^2 + \frac{6}{7}a^3$	15. 7 <i>w</i> –16 <i>u</i> + 3 <i>v</i>
6. $9p - 9q - 9p^3 - 9q^2$	17. $z^9 + 10y^8 - x$	18. 100,050 + $\frac{4}{5}k - k^4$
	th height x, length $x - 1$, and binomial $2x^3 - 2x$. What is t	

20. The trinomial $-16t^2 + 32t + 32$ describes the height in feet of a ball thrown upward after *t* seconds. What is the height of the ball $\frac{5}{8}$ seconds after it was thrown?

87

Name	Date Class
California Standards Preview of and Preparation for -	• 1A10.0; •••• 7AF1.3
12-2 Simplifying Polyn	omials
Identify the like terms in each polyno	omial.
1. $x^2 - 8x + 3x^2 + 6x - 1$	2. $2c^2 + d^3 + 3d^3 - 2c^2 + 6$
3. $2x^2 - 2xy - 2y^2 + 3xy + 3x^2$	4. $2 - 9x + x^2 - 3 + x$
5. $xy - 5x + y - x + 10y - 3y^2$	6. $6p + 2p^2 + pq + 2q^3 - 2p$
7. $3a + 2b + a^2 - 5b + 7a$	8. $10m - 3m^2 + 9m^2 - 3m - m^3$
Simplify.	
9. 2h – 9hk + 6h – 6k	10. $9(x^2 + 2xy - y^2) - 2(x^2 + xy)$
11. $7qr - q^2r^3 + 2q^2r^3 - 6qr$	12. $8v^4 + 3v^2 + 2v^2 - 16$
13. $3(x + 2y) + 2(2x - 3y)$	14. $7(1 - x) + 3x^2y + 7x - 7$
15. 6(9 <i>y</i> + 1) + 8(2 - 3 <i>y</i>)	16. $a^2b - a^2 + ab^2 - 3a^2b + ab$

17. A student in Tracey's class created the following expression: $y^3 - 3y + 4(y^2 - y^3)$. Use the Distributive Property to write an equivalent expression.

10. Six blocks of height 4h + 4 each and 3 blocks of height 8 - 2h each are stacked on top of each other to form one big tower. Find an expression for the overall height of the tower.

Name		Date	Class
	of 🛖 1A10.0; 🛖 7AF1.3		
	btracting Polynomial	S	
Find the opposite	of each polynomial.		
1. 18 <i>xy</i> ³	2. -9 <i>a</i> + 4		3. 6d ² – 2d – 8
Subtract.			
	(2) (0, 1, 0, $(2, 0)$)	(0, 4)	(0, 0, 0, 4, 0)
4. $(4n^{+} - 4n + 4)$	n^2) - (6n + 3n^2 - 8) 5	b. $(-2n + 3n)$	n = 4) = (2n = 3n + 2)
		· · · - 2	
6. $(6m + 2m^2 - 1)$	$(-6m^2 - m - 7) = 7$	$(1/x^2 - x + x)$	$(-3) - (14x^2 + 3x + 5)$
8. $w + 7 - (3w^4)$	$+ 5w^3 - 7w^2 + 2w - 10)$		
o (o 3	. 3 - 2 2 (2 2 -	2 2 -	- 3
9. (9 <i>r³s</i> – 3 <i>rs</i> + 4	$4rs^3 + 5r^2s^2$) - (2rs ² - 2	<i>r's'</i> + 6 <i>rs</i> +	$7r^{3}s - 9$)
		2	2 2
10. $(3qr^2 - 2 + 14)$	$4q^2r^2 - 9qr) - (-10qr + 1)$	$1 - 5qr^{-} + 6$	q ⁻ r ⁻)
dd. The continue of			
I. The volume of a	a rectangular prism, in cubio	c meters. Is di	ven bv

- **11.** The volume of a rectangular prism, in cubic meters, is given by the expression $x^3 + 7x^2 + 14x + 8$. The volume of a smaller rectangular prism is given by the expression $x^3 + 5x^2 + 6x$. How much greater is the volume of the larger rectangular prism?
- **12.** Sarah has a table with an area, in square inches, given by the expression of $y^2 + 30y + 200$. She has a tablecloth with an area, in square inches, given by the expression of $y^2 + 18y + 80$. She wants the tablecloth to cover the top of the table. What expression represents the number of square inches of additional fabric she needs to cover the top of the table?

Copyright © by Holt, Rinehart and Winston. All rights reserved.

Date Class
.2, •••• 7AF1.3, 7AF2.2
lynomials by Monomials
2. $(-9pr^4)(p^2r^2)$
4. $(3efg^2)(-3e^2f^2g)$
6. $-x(x^2 + 2)$
8. $6x(-x^5 + 2x^3 + x)$
10. $-9ab(a^2 + 2ab - b^2)$
12. $8p^4(p^2 - 8p + 17)$
14. $7x^2(3x^2y + 7x^2 - 2x)$
16. $h^2 k (2hk^2 - hk + 7k)$

17. A triangle has a base of $4x^2$ and a height of 6x + 3. Write and simplify an expression for the area of the triangle.

lame		Class
alifornia Standards Preview of 🛻		
LESSON Practic	/ing Binomials	
Aultiply.		
1. $(z + 1)(z + 2)$	2. (1 - y)(2 - y)	3. $(2x + 1)(2x + 4)$
4. $(w + 1)(w - 3)$	5. $(3v + 1)(v - 1)$	6. $(t+2)(2t-2)$
7. $(-3g + 4)(2g - 1)$	8. $(3c + d)(c - 2d)$	9. $(2a + b)(a + 2b)$
area of the base of the	ie dox.	
amount of space of w	14 ft \times 18 ft room so that ther vidth <i>s</i> feet all the way around t	the table.
 A table is placed in a amount of space of w Write and simplify an A circular swimming p a deck with width <i>y</i> fermion 	14 ft \times 18 ft room so that ther	the table. table. rrounded by ession for
 A table is placed in a amount of space of w Write and simplify an A circular swimming p a deck with width <i>y</i> fermion 	14 ft × 18 ft room so that ther vidth <i>s</i> feet all the way around t expression for the area of the pool with a radius of 14 ft is su	the table. table. rrounded by ession for
 A table is placed in a amount of space of w Write and simplify an A circular swimming p a deck with width <i>y</i> for the total area of the p 	14 ft × 18 ft room so that ther vidth <i>s</i> feet all the way around t expression for the area of the pool with a radius of 14 ft is su	the table. table. rrounded by ession for
 A table is placed in a amount of space of w Write and simplify an A circular swimming p a deck with width <i>y</i> for the total area of the p 	14 ft × 18 ft room so that ther vidth <i>s</i> feet all the way around t expression for the area of the pool with a radius of 14 ft is su set. Write and simplify an expre- pool and the deck. Use $\frac{22}{7}$ for p	the table. table. rrounded by ession for bi.