Holt California Mathematics

Course 2

Homework and Practice Workbook

Copyright © by Holt, Rinehart and Winston

All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher.

Requests for permission to make copies of any part of the work should be mailed to the following address: Permissions Department, Holt, Rinehart and Winston, 10801 N. MoPac Expressway, Building 3, Austin, Texas 78759.

HOLT and the "Owl Design" are trademarks licensed to Holt, Rinehart and Winston, registered in the United States of America and/or other jurisdictions.

Printed in the United States of America
If you have received these materials as examination copies free of charge, Holt, Rinehart and Winston retains title to the materials and they may not be resold. Resale of examination copies is strictly prohibited.

Possession of this publication in print format does not entitle users to convert this publication, or any portion of it, into electronic format.

CONTENTS

Chapter 1 1
Chapter 2 10
Chapter 3 18
Chapter 4 26
Chapter 5 35
Chapter 6 42
Chapter 7 49
Chapter 8 58
Chapter 9 66
Chapter 10 72
Chapter 11 79
Chapter 12 87
\qquad
\qquad
\qquad

1-1 Evaluating Algebraic Expressions

Evaluate each expression for the given value of the variable.

1. $6 x+2$ for $x=3$
2. $18-a$ for $a=13$
3. $\frac{1}{4} y$ for $y=16$
4. $9-2 b$ for $b=3$
5. $44-12 n$ for $n=3$
6. $7.2+8 k$ for $k=2$
7. $20(b-15)$ for $b=19$
8. $n(18-5)$ for $n=4$

Evaluate each expression for the given value of the variables.
9. $2 x+y$ for $x=7$ and $y=11$
10. $4 j-k$ for $j=4$ and $k=10$
11. $9 a-6 b$ for $a=6$ and $b=2$
12. $5 s+5 t$ for $s=15$ and $t=12$
13. $(15-n) m$ for $m=7$ and $n=4$
14. $w(14-y)$ for $w=8$ and $y=5$

If q is the number of quarts of lemonade, then $\frac{1}{4} q$ can be used to find the number of cups of lemonade mix needed to make the lemonade. How much mix is needed to make each amount of lemonade?
15. 2 quarts
16. 8 quarts
17. 12 quarts
18. 18 quarts
19. If m is the number of minutes a taxi ride lasts, then $2+0.35 m$ can be used to find the cost of a taxi ride with Bill's Taxi Company.

How much will it cost for a 12-min taxi ride? \qquad
\qquad Date \qquad Class \qquad
California Standards AF1.1
(ax $\frac{\text { Lesson }}{1-2}$ Practice

Write an algebraic expression for each word phrase.

1. 6 less than twice x
2. 3 times the sum of b and 5
3. the sum of 11 times s and 3
\qquad
Write a word phrase for each algebraic expression.
4. $2 n+4$
5. $3 r-1$
6. $10-6 n$
\qquad
\qquad
7. $15 x-12$
8. $\frac{y}{5}+8$
9. Maddie earns $\$ 8$ per hour. Write an algebraic expression to evaluate how much money Maddie will earn if she works for $15,20,25$, or 30 hours.

\boldsymbol{n}		Earnings
15		
20		
25		
30		

14. Write a word problem that can be evaluated by the algebraic expression $y-95$, and evaluate it for $y=125$.
\qquad
\qquad
\qquad
\qquad Date \qquad Class \qquad
California Standards NS2.5, NS1.1

Lesson Practice

1-3 Integers and Absolute Value

Compare. Write $<,>$, or $=$.

1. -6 \square 6
2. 12 \square 10
3. $18 \square 5$

Write the integers in order from least to greatest.
4. $-8,2,-11$
5. $-12,-15,0$
6. $-24,-17,30$
7. $16,-14,-7$
8. $-9,-7,-16$
9. $-19,-23,-10$

Simplify each expression.
10. |-17|
\qquad
13. $|-8|+|-4|$
\qquad
16. | $29-16 \mid$
\qquad
19. $|-15|+|10|$
20. $|-9|+|30|$
21. $|24|+|-8|$
\qquad
22. Natalie keeps track of her bowling scores. The scores for the games she played this Saturday relative to her best score last Saturday are Game A, 6; Game B, -3; Game C, 8; and Game D, -5 . Use $<,>$, or $=$ to compare her first two games. Then list her games in order from the lowest score to the highest.
\qquad Date \qquad Class \qquad
California Standards - NS1.2, - AF1.3

LESSON
 Practice

1-4 Adding Integers

Use a number line to find each sum.

1. $3+1$
\qquad

2. $-3+2$
\qquad

Add.
3. $-5+18$
4. $-10+17$
5. $-22+(-9)$
6. $24+(-15)$

Evaluate each expression for the given value of the variable.
7. $r+7$ for $r=3$
8. $m+5$ for $m=9$
9. $x+9$ for $x=4$
10. $-6+t$ for $t=-8$
13. $-5+d$ for $d=-2$
16. $-8+b$ for $b=13$
\qquad
19. Joleen has 2560 trading cards in her collection. She buys 165 new cards for the collection. How many trading cards does she have now?
20. The running back for the Bears carries the ball twice in the first quarter. The first run he gained fifteen yards and the second run he lost eight yards. How many yards did the two runs total?
\qquad Date \qquad Class \qquad
California Standards NS1.2, NS2.5

LESSON
 Practice

1-5 Subtracting Integers

Subtract.

1. 8 - 2
2. $10-5$
3. $7-12$
4. $16-10$
5. $3-10$
6. $16-9$
7. $-4-9$
8. $-8-10$
9. $33-57$
10. $16-49$
11. $-114-19$
12. $-88-(-10)$
\qquad
\qquad
Evaluate each expression for the given value of the variable.
13. $x-8$ for $x=10$
14. $15-x$ for $x=-12$
15. $-9-x$ for $x=-20$
\qquad
16. $|w-8|+6$ for $w=9$
17. $16-|t+8|$ for $t=10$
18. $|14-x|-9$ for $x=8$
19. The altitude of Mt. Blackburn in Alaska is 16,390 feet. The altitude of Mt. Elbert in Colorado is 14,433 feet. What is the difference in the altitudes of the two mountains?
20. In January, Jesse weighed 230 pounds. By November, he weighed 185 pounds. How much did Jesse's weight change?
\qquad Date \qquad Class \qquad
California Standards 2 NS1.2

Practice

LESSON

1-6 Multiplying and Dividing Integers

Multiply or divide.

1. $6 \cdot 7$
2. $\frac{-15}{5}$
3. $-7 \cdot 3$
4. $\frac{20}{-4}$
5. $\frac{-36}{-4}$
6. $-8(-9)$
7. $(-6)(-9)$
8. $(-4)(8)$
9. $-9(-3)$
10. $5(-8)$
\qquad
Simplify.
11. $10(8-2)$
12. $-4(12-3)$
13. $9(15-8)$
14. $12(-9+4)$
15. $-11(7-13)$
16. $15(-12+8)$
17. $-10(-8-6)$
18. $6(-12+1)$
19. $-5(3-12)$
20. $-8(-5-5)$
21. $7(12-3)$
22. $10(-7-1)$
23. $12(2-5)$
24. $-15(-2-1)$
25. $9(8-20)$
26. Kristin and her three friends buy a pizza with twelve slices and split it equally. How many slices will each person receive?
27. The temperature was $-1^{\circ} \mathrm{F},-5^{\circ} \mathrm{F}, 8^{\circ} \mathrm{F}$, and $-6^{\circ} \mathrm{F}$ on four consecutive days. What was the average temperature for those days?
\qquad
\qquad Date \qquad Class \qquad
California Standards Preparation for AF4.0; AF1.4

Lesson Practice

1-7 Solving Equations by Adding or Subtracting

Determine which value is a solution of the equation.

1. $x-6=12 ; x=6,8$, or 18
2. $9+x=17 ; x=6,8$, or 26
3. $x-12=26 ; x=14,38$, or 40
4. $x+18=59 ; x=37,41$, or 77

Solve.
5. $n-8=11$
6. $9+g=13$
7. $y+6=2$
8. $-6+j=-12$
9. $s-8=11$
\qquad
13. $d-12=-5$
11. $a+35=51$
\qquad
14. $7.5+c=10.6$
15. $y-1.7=0.6$
16. $m-2.25=4.50$
17. Two sisters, Jenny and Penny, play on the same basketball team. Last season they scored a combined total of 458 points. Jenny scored 192 of the points. Write and solve an equation to find the number of points Penny scored.
\qquad
18. After his payment, Mr. Weber's credit card balance was $\$ 245.76$. His payment was for $\$ 75.00$. Write and solve an equation to find the amount of his credit card bill.
\qquad Date \qquad Class \qquad
California Standards Preparation for AF4.0; AF1.3, MG1.3

Lesson Practice

1-8 Solving Equations by Multiplying or Dividing

Solve and check.

1. $4 w=48$
2. $8 y=56$
3. $-4 b=64$
4. $\frac{x}{4}=-9$
5. $\frac{v}{-6}=-14$
6. $\frac{n}{21}=-3$
7. $5 a=-75$
8. $54=3 q$
9. $23 b=161$
10. $\frac{k}{21}=15$
11. $\frac{w}{-17}=17$
12. $11=\frac{r}{34}$
13. $672=-24 b$
14. $\frac{u}{25}=13$
15. $42 m=-966$
16. Alex scored 13 points in the basketball game. This was $\frac{1}{5}$ of the total points the team scored. Write and solve an equation to determine the total points t the team scored.
17. Jar candles at the Candle Co. cost $\$ 4$. Nikki spent $\$ 92$ buying jar candles for party favors. Write and solve an equation to determine how many jar candles c Nikki bought at the Candle Co.
\qquad Date \qquad Class \qquad California Standards AF4.1, AF1.1

Lesson Practice
1-9 Solving Two-Step Equations
Solve. Check each answer.

1. $5 g+9=24$
2. $-6 w-3=9$
3. $2 d-16=12$
4. $7 t-3=11$
5. $4 n+1=13$
6. $3 k-15=6$

Solve.
7. $\frac{y}{6}-7=2$
8. $\frac{m}{2}+8=5$
9. $1+\frac{s}{5}=8$
10. $-3+\frac{b}{7}=-6$
11. $6+\frac{x}{3}=13$
12. $\frac{f}{5}-9=-7$
13. $-4+\frac{v}{2}=5$
14. $\frac{a}{7}+1=9$
15. $\frac{w}{-5}+8=2$
16. Two years of local phone service costs $\$ 883$, including the installation fee of $\$ 55$. What is the monthly fee?

Name \qquad Date \qquad Class \qquad
California Standards NS1.5; NS1.3

Lesson Practice

2-1 Rational Numbers
Write each fraction as a decimal.

1. $\frac{1}{8}$
2. $\frac{8}{3}$
3. $\frac{14}{15}$
4. $\frac{16}{5}$
5. $\frac{11}{16}$
6. $\frac{7}{9}$
7. $\frac{4}{5}$
8. $\frac{31}{25}$

Write each decimal as a fraction in simplest form.
9. 0.72
10. 0.058
11. -1.65
12. 2.1
13. 0.036
14. -4.06
15. 2.305
16. 0.0064
17. -0.60
18. 6.95
19. 0.016
20. 0.0005

Write each repeating decimal as a fraction in simplest form.
21. $0 . \overline{8}$
22. $0 . \overline{84}$
23. $0 . \overline{841}$
24. $0 . \overline{4}$
25. $0 . \overline{28}$
26. $0 . \overline{2}$
27. $0 . \overline{54}$
28. $0 . \overline{774}$
29. Make up a fraction that cannot be simplified that has 24 as its denominator.
\qquad
\qquad
\qquad Class \qquad
California Standards NS1.1, NS1.3
Lesson Practice

2-2 Comparing and Ordering Rational Numbers

Compare. Write $<,>$, or $=$.

1. $\frac{1}{8} \square \frac{1}{10}$
2. $\frac{3}{5} \square \frac{7}{10}$
3. $-\frac{1}{3} \square-\frac{3}{4}$
4. $\frac{5}{6} \square \frac{3}{4}$
5. $-\frac{2}{7} \square-\frac{1}{2}$
6. $1 \frac{2}{9} \square 1 \frac{2}{3}$
7. $-\frac{8}{9} \square-\frac{3}{10}$
8. $-\frac{4}{5} \square-\frac{8}{10}$
9. $0.08 \square \frac{3}{10}$
10. $\frac{11}{15} \square$
$0.7 \overline{3}$
11. $2 \frac{4}{9} \square 2 \frac{3}{4}$
12. $-\frac{5}{8} \square-0.58$
13. $3 \frac{1}{4} \square 3.3$
14. $-\frac{1}{6} \square-\frac{1}{9}$
15. $0.75 \square \frac{3}{4}$
16. $-2 \frac{1}{8} \square-2.1$
17. $1 \frac{1}{2} \square 1.456$
18. $-\frac{3}{5} \square-0.6$
19. On Monday, Gina ran 1 mile in 9.3 minutes. Her times for running 1 mile on each of the next four days, relative to her time on Monday, were $-1 \frac{2}{3}$ minutes, -1.45 minutes, -1.8 minutes, and $-1 \frac{3}{8}$ minutes. List these relative times in order from least to greatest.
20. Trail A is 3.1 miles long. Trail C is $3 \frac{1}{4}$ miles long. Trail B is longer than Trail A but shorter than Trail C. What is a reasonable distance for the length of Trail B?
\qquad Date \qquad Class \qquad
California Standards $2=$ NS1.2

Practice

2-3 Adding and Subtracting Rational Numbers

1. $47.8+25.37$
2. Gretchen bought a sweater for \$23.89. In addition, she had to pay $\$ 1.43$ in sales tax. She gave the sales clerk \$30. How much change did Gretchen receive from her total purchase?
3. $60.15-3.8$
4. Jacob is replacing the molding around two sides of a picture frame. The measurements of the sides of the frame are $4 \frac{3}{16}$ in. and $2 \frac{5}{16}$ in. What length of molding will Jacob need?

Add or subtract. Simplify.
5. $\frac{3}{8}+\frac{1}{8}$
6. $-\frac{1}{10}+\frac{7}{10}$
7. $\frac{5}{14}-\frac{3}{14}$
8. $\frac{4}{15}+\frac{7}{15}$
9. $\frac{5}{18}-\frac{7}{18}$
10. $-\frac{8}{17}-\frac{2}{17}$
11. $-\frac{1}{16}+\frac{5}{16}$
12. $\frac{3}{20}+\frac{1}{20}$

Evaluate each expression for the given value of the variable.
13. $38.1+x$ for $x=-6.1$
14. $18.7+x$ for $x=8.5$
15. $\frac{8}{15}+x$ for $x=-\frac{4}{15}$
16. $\frac{13}{20}+x$ for $x=\frac{4}{20}$
17. $21.6+x$ for $x=-11.2$
18. $\frac{8}{13}+x$ for $x=\frac{2}{13}$

Name \qquad Date \qquad Class \qquad

California Standards NS1.2

Lesson Practice

2-4 Multiplying Rational Numbers

Multiply. Write each answer in simplest form.

1. $\frac{14}{8}\left(\frac{17}{21}\right)$
2. $-\frac{12}{20}\left(\frac{9}{18}\right)$
3. $-\frac{12}{30}\left(-\frac{42}{72}\right)$
4. $-\frac{13}{35}\left(-\frac{5}{26}\right)$
5. $-\frac{5}{18}\left(\frac{8}{15}\right)$
6. $\frac{7}{12}\left(\frac{14}{21}\right)$
7. $-\frac{1}{9}\left(\frac{27}{24}\right)$
8. $-\frac{1}{11}\left(-\frac{3}{2}\right)$
9. $\frac{7}{20}\left(-\frac{15}{28}\right)$
10. $\frac{16}{25}\left(-\frac{18}{32}\right)$
11. $\frac{1}{9}\left(-\frac{18}{17}\right)$
12. $\frac{17}{20}\left(-\frac{12}{34}\right)$
13. $-4\left(2 \frac{1}{6}\right)$
14. $\frac{3}{4}\left(1 \frac{3}{8}\right)$
15. $3 \frac{1}{5}\left(\frac{2}{3}\right)$
16. $-\frac{5}{6}\left(2 \frac{1}{2}\right)$

Multiply.
17. $-2(-5.2)$
18. $0.53(0.04)$
19. $(-7)(-3.9)$
20. $-2(8.13)$
21. $0.02(-4.62)$
22. $0.5(-7.8)$
23. $(-0.41)(-8.5)$
24. $(-8)(6.3)$
25. $15(-0.05)$
26. $(-3.04)(-1.7)$
27. $10(-0.09)$
28. $(-0.8)(-0.15)$
\qquad
\qquad
\qquad
\qquad
29. Travis painted for $6 \frac{2}{3}$ hours. He received $\$ 27$ an hour for his work. How much was Travis paid for doing this painting job?
\qquad
\qquad Date \qquad Class \qquad
California Standards - NS1.2, AF1.3

Lesson Practice

2-5 Dividing Rational Numbers

Divide. Write each answer in simplest form.

1. $\frac{1}{5} \div \frac{3}{10}$
2. $-\frac{5}{8} \div \frac{3}{4}$
3. $\frac{1}{4} \div \frac{1}{8}$
4. $-\frac{2}{3} \div \frac{4}{15}$
5. $1 \frac{2}{9} \div 1 \frac{2}{3}$
6. $-\frac{7}{10} \div\left(\frac{2}{5}\right)$
7. $\frac{6}{11} \div \frac{3}{22}$
8. $\frac{4}{9} \div\left(-\frac{8}{15}\right)$
9. $\frac{3}{8} \div-15$
10. $-\frac{5}{6} \div 12$
11. $6 \frac{1}{2} \div 1 \frac{5}{8}$
12. $-\frac{9}{10} \div 6$

Divide.

13. $24.35 \div 0.5$
\qquad
14. $87.36 \div 0.6$
\qquad
15. $1.23 \div 0.003$
16. $62.46 \div 0.09$
17. $21.12 \div 0.4$
18. $82.68 \div 0.06$
19. $63.81 \div 0.9$
20. $4.27 \div 0.007$
\qquad
\qquad

Evaluate each expression for the given value of the variable.
25. $\frac{18}{x}$ for $x=0.12$
26. $\frac{10.8}{x}$ for $x=0.03$
27. $\frac{9.18}{x}$ for $x=-1.2$
28. A can of fruit contains $3 \frac{1}{2}$ cups of fruit. The suggested serving size is $\frac{1}{2}$ cup. How many servings are in the can of fruit?

Name \qquad Date \qquad Class \qquad
California Standards $\operatorname{ms} 1.2$, NS2.2

Lesson Practice

2-6 Adding and Subtracting with Unlike Denominators

Add or subtract.

1. $\frac{2}{3}+\frac{1}{2}$
2. $\frac{3}{5}+\frac{1}{3}$
3. $\frac{3}{4}-\frac{1}{3}$
4. $\frac{1}{2}-\frac{5}{9}$
5. $\frac{5}{16}-\frac{5}{8}$
6. $\frac{7}{9}+\frac{5}{6}$
7. $\frac{7}{8}-\frac{1}{4}$
8. $\frac{5}{6}-\frac{3}{8}$
9. $2 \frac{7}{8}+3 \frac{5}{12}$
10. $1 \frac{2}{9}+2 \frac{1}{18}$
11. $3 \frac{2}{3}-1 \frac{3}{5}$
12. $1 \frac{5}{6}+\left(-2 \frac{3}{4}\right)$
13. $\frac{5}{72}+\frac{68}{90}$
14. $\frac{81}{140}-\frac{67}{105}$
15. $\frac{11}{45}+\frac{21}{96}$
16. $\frac{56}{70}-\frac{107}{198}$

Evaluate each expression for the given value of the variable.
17. $2 \frac{3}{8}+x$ for $x=1 \frac{5}{6}$
18. $x-\frac{2}{5}$ for $x=\frac{1}{3}$
19. $x-\frac{3}{10}$ for $x=\frac{3}{7}$
20. $1 \frac{5}{8}+x$ for $x=-2 \frac{1}{6}$
21. $x-\frac{3}{4}$ for $x=\frac{1}{6}$
22. $x-\frac{3}{10}$ for $x=\frac{1}{2}$
23. Ana worked $6 \frac{1}{2} \mathrm{~h}$ on Monday, $5 \frac{3}{4} \mathrm{~h}$ on Tuesday and $7 \frac{1}{6} \mathrm{~h}$ on Friday. How many total hours did she work these three days?
\qquad Date \qquad Class \qquad
California Standards AF4.0

Practice

2-7 One-Step Equations with Rational Numbers
Solve.

1. $x+6.8=12.19$
2. $y-10.24=5.3$
3. $0.05 w=6.25$
4. $\frac{a}{9.05}=8.2$
5. $-12.41+x=-0.06$
6. $\frac{d}{-8.4}=-10.2$
7. $-2.89=1.7 m$
8. $n-8.09=-11.65$
9. $\frac{x}{5.4}=-7.18$
10. $\frac{7}{9}+x=1 \frac{1}{9}$
11. $\frac{6}{11} y=-\frac{18}{22}$
12. $\frac{7}{10} d=\frac{21}{20}$
13. $x-\left(-\frac{9}{14}\right)=\frac{5}{7}$
14. $x-\frac{15}{21}=2 \frac{6}{7}$
15. $-\frac{8}{15} a=\frac{9}{10}$
16. A recipe calls for $2 \frac{1}{3}$ cups of flour and $1 \frac{1}{4}$ cups of sugar. If the recipe is tripled, how much flour and sugar will be needed?
17. Daniel filled the gas tank in his car with 14.6 gal of gas. He then drove 284.7 mi before needing to fill up his tank with gas again. How many miles did the car get to a gallon of gasoline?
\qquad Date \qquad Class \qquad
California Standards AF4.1

Lesson Practice

2-8 Two-Step Equations with Rational Numbers

Write and solve a two-step equation to answer the following

 questions.1. The school purchased baseball equipment and uniforms for a total cost of $\$ 1762$. The equipment costs \$598 and the uniforms were \$24.25 each. How many uniforms did the school purchase?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Solve.
3. $\frac{a}{3}+\frac{5}{3}=6$
4. $\frac{x}{4}+\frac{2}{3}=\frac{-2}{3}$
5. $\frac{y}{6}-\frac{2}{3}=-3$
6. $\frac{k}{8}+\frac{1}{4}=\frac{7}{4}$
7. $0.5 x-6=-4$
8. $\frac{x}{2}+3=-4$
9. $\frac{1}{5} n+3=6$
10. $2 a-7=-9$
11. $\frac{3 x}{4}-\frac{1}{2}=4$
12. $-7.8=4.4+2 r$
13. $\frac{4 w}{3}-\frac{5}{6}=-2$
14. $1.3-5 r=7.4$
15. A phone call costs $\$ 0.58$ for the first 3 minutes and $\$ 0.15$ for each additional minute. If the total charge for the call was $\$ 4.78$, how many minutes was the call?
16. Seventeen less than four times a number is twenty-seven.

Find the number.
\qquad Date \qquad Class \qquad
California Standards AF1.3

Practice

LESSON Properties of Rational Numbers

Name the property that is illustrated in each equation.

1. $16+\frac{1}{3}=\frac{1}{3}+16$
2. $4 \cdot(3 \cdot p)=(4 \cdot 3) \cdot p$
3. $(11+m)+9=11+(m+9)$
4. $6 \cdot 1.5=1.5 \cdot 6$

Simplify each expression. Write a reason for each step.
5. $38+19+2$
$38+19+2=$ \qquad Reason: \qquad
\qquad

\qquad
Reason: \qquad
Reason: \qquad
$=$ \qquad

Reason: \qquad
6. $\frac{1}{3} \cdot 8 \cdot 18$
$\frac{1}{3} \cdot 8 \cdot 18=$ \qquad Reason: \qquad

$$
\begin{aligned}
& = \\
& = \\
& =
\end{aligned}
$$

Reason: \qquad
Reason: \qquad
Reason: \qquad
Write each product using the Distributive Property. Then simplify.
7. 7(31)
$7(31)=$ \qquad
\qquad
$=$ \qquad

$$
=
$$

\qquad
8. 5(28)
$5(28)=$ \qquad
$=$ \qquad
$=$ \qquad
\qquad
\qquad Date \qquad Class \qquad
California Standards AF1.3

LESSON

3-2 Simplifying Algebraic Expressions
Combine like terms.

1. $8 a-5 a$
2. $12 g+7 g$
3. $4 a+7 a+6$
4. $6 x+3 y+5 x$
5. $10 k-3 k+5 h$
6. $3 p-7 q+14 p$
7. $3 k+7 k+5 k$
8. $5 c+12 d-6$
9. $13+4 b+6 b-5$
10. $4 f+6+7 f-2$
11. $x+y+3 x+7 y$
12. $9 n+13-8 n-6$

Simplify.
13. $4(x+3)-5$
14. $6(7+x)+5 x$
15. $3(5+3 x)-4 x$
16. Gregg has q quarters and p pennies. His brother has 4 times as many quarters and 8 times as many pennies as Gregg has.
Write the sum of the number of coins they have, and then combine like terms.
\qquad
17. If Gregg has 6 quarters and 15 pennies, how many total coins do Gregg and his brother have?
\qquad
\qquad Date \qquad Class \qquad
California Standards Extension of a-AF4.1

Lesson Practice

3-3 Solving Multi-Step Equations

Solve.

1. $2 x+5 x+4=25$
2. $9+3 y-2 y=14$
3. $16=4 w+2 w-2$
\qquad
4. $26=3 b-2-7 b$
5. $\frac{5 m}{8}-\frac{6}{8}+\frac{3 m}{8}=\frac{2}{8}$
6. $-4 \frac{2}{3}=\frac{2 n}{3}+\frac{1}{3}+\frac{n}{3}$
7. $7 a+16-3 a=-4$
8. $\frac{x}{2}+1+\frac{3 x}{4}=-9$
9. $7 m+3-4 m=-9$
10. $\frac{2 x}{5}+3-\frac{4 x}{5}=\frac{1}{5}$
11. $\frac{7 k}{8}-\frac{3}{4}-\frac{5 k}{16}=\frac{3}{8}$
12. $6 y+9-4 y=-3$
13. $\frac{5 a}{6}-\frac{7}{12}+\frac{3 a}{4}=-2 \frac{1}{6}$
14. The measure of an angle is 28° greater than its complement.

Find the measure of each angle.
17. The measure of an angle is 21° more than twice its supplement.

Find the measure of each angle.
18. The perimeter of the triangle is 126 units.

Find the measure of each side.

19. The base angles of an isosceles triangle are congruent. If the measure of each of the base angles is twice the measure of the third angle, find the measure of all three angles.
\qquad Date \qquad Class \qquad California Standards AF1.1, Extension of AF4.1

LESSON
 Practice

3-4 Solving Equations with Variables on Both Sides

Solve.

1. $7 x-11=-19+3 x$
2. $11 a+9=4 a+30$
3. $4 t+14=\frac{6 t}{5}+7$
\qquad
4. $19 c+31=26 c-74$
5. $\frac{3 y}{8}-9=13+\frac{y}{8}$
6. $\frac{3 k}{5}+44=\frac{12 k}{25}+8$
7. $10 a-37=6 a+51$
8. $5 w+9.9=4.8+8 w$
9. $15-x=2(x+3)$
10. $15 y+14=2(5 y+6)$
11. $14-\frac{w}{8}=\frac{3 w}{4}-21$
12. $\frac{1}{2}(6 x-4)=4 x-9$
13. $4(3 d-2)=8 d-5$
14. $\frac{y}{3}+11=\frac{y}{2}-3$
15. $\frac{2 x-9}{3}=8-3 x$
16. Forty-eight decreased by a number is the same as the difference of four times the number and seven. Find the number.
17. The square and the equilateral triangle at the right have the same perimeter. Find the length of the sides of the triangle.

$x+5$

[^0]\qquad
\qquad
\qquad Date \qquad Class \qquad
California Standards AF1.1

3-5 Inequalities

Write an inequality for each situation.

1. There are no more than 7 peaches in the bowl.
2. The aquarium contains more than 20 fish.
3. The length of the branch is at most 11 inches.
4. Mike has at least 6 pencils in his backpack.

Write an inequality for each statement.
5. A number s increased by 3 is at least 19.
6. A number m decreased by 10 is less than 25 .
7. Twice a number y is no more than 12.
8. The sum of 4 and a number p is greater than 9 .

Graph each inequality.
9. $x \geq-3$

10. $n<4$

12. $y>\frac{1}{2}$

Write a compound inequality for each statement.
13. A number x is either less than 8 or greater than 15.
14. A number t is greater than -4 and less than or equal to -1 .
15. A number m is greater than or equal to 0 and less than 6.1.
\qquad
\qquad
11. $g \leq-2$

\qquad

Name \qquad Date \qquad Class \qquad
California Standards AF4.0

LESSON
 Practice

3-6 Solving Inequalities by Adding or Subtracting
Solve and graph each inequality.

1. $x+4>9$

2. $c-6 \leq 1$

3. $y+3 \geq-8$

4. $3+v<-5$

\qquad
5. $b-2 \leq 5$

\qquad
6. $-9+w<-15$

\qquad
7. $k+3 \frac{1}{2} \leq 0$

8. $7+n>-2$

9. $r+6 \geq-1$

\qquad
10. $14+k>25$

11. $n+7 \frac{1}{2} \geq 12$

12. $a-8 \geq-12$

13. $-1 \frac{2}{3}+b \leq-1$

14. Charlotte needs to collect at least 5,000 signatures for her petition. She has already collected 3,187 signatures. Write and solve an equation to determine how many more signatures Charlotte needs.
\qquad
\qquad Date \qquad Class \qquad
California Standards AF1.1, AF4.0

LEsson Practice

3-7 Solving Inequalities by Multiplying or Dividing

Solve and graph.

1. $\frac{m}{-5} \leq 4$
$\stackrel{\mid}{\stackrel{1}{2}} \begin{array}{cccccc}\mid & \mid & \mid & \mid & \xrightarrow{\mid} \\ -21 & -20 & -19 & -18 & -17 & -16\end{array}$
2. $-16<-8 n$
3. $7 p \geq 49$

4. $10>\frac{q}{2}$
\qquad

5. $-\frac{r}{3} \leq 15$
6. $22>-2 s$

7. $-6 t<-24$

8. $\frac{v}{20} \geq 2$

9. On a snorkeling trip, Antonia dove at least 7 times as deep as Lucy did. If Antonia dove 35 feet below the ocean's surface, what was the deepest that Lucy dove?
\qquad
10. Last week, Saul ran more than one-fifth the distance that his friend Omar ran. If Saul ran 14 miles last week, how far did Omar run?

Name \qquad Date \qquad Class \qquad
California Standards AF4.1
Lesson Practice
3-8 Solving Two-Step Inequalities
Solve and graph.

1. $4 x-2<26$
2. $6-\frac{1}{5} y \leq 7$
$\stackrel{\mid}{\mid} \stackrel{\mid}{\mid} \left\lvert\, \begin{array}{lllllllll}\mid & \mid & \mid & \mid & \mid & \mid & \mid & \mid\end{array}\right.$
$\underset{-6-5-4-3-2-1}{\mid}$
3. $2 x+27 \geq 15$

4. $10 x>14 x+8$

5. $7-4 w \leq 19$
6. $\frac{k}{5}+\frac{3}{20}<\frac{3}{10}$

7. $4.8-9.6 x \leq 14.4$
\qquad

8. $\frac{2}{9}+\frac{y}{3}>\frac{1}{3}$

9. One-third of a number, decreased by thirty-six, is at most twenty-two. Find the number.
10. Jack wants to run at least 275 miles before the baseball season begins. He has already run
25 miles. He plans to run 2.5 miles each day.
At this rate, what is the fewest number of days he will need to reach his goal?

Name \qquad Date \qquad Class \qquad
California Standards AF2.1, AF1.2

Practice

LESSON Exponents
Write in exponential form.

1. $6 \cdot 6 \cdot 6 \cdot 6 \cdot 6 \cdot 6$
2. $(-8) \cdot(-8) \cdot(-8) \cdot(-8)$

Simplify.
5. 10^{2}
6. $(-6)^{2}$
7. $\left(\frac{1}{8}\right)^{2}$
8. $(-7)^{2}$
9. $(-5)^{3}$
10. 12^{2}
11. $(-9)^{2}$
12. $(-4)^{3}$
13. 2^{5}
14. 5^{4}
15. $(-3)^{4}$
16. $\left(\frac{1}{6}\right)^{3}$

Simplify each expression for the given values of the variables.
17. $n^{3}-5$ for $n=4$
18. $4 x^{2}+y^{3}$ for $x=5$ and $y=-2$
19. $m^{p}+q^{2}$ for $m=5, p=2$, and $q=4$
20. $a^{4}+2\left(b-c^{2}\right)$ for $a=2, b=4$, and $c=-1$
21. Write an expression for five times a number used as a factor three times.
22. Find the volume of a regular cube if the length of a side is 10 cm . (Hint: $V=I^{3}$.)
\qquad Date \qquad Class \qquad
California Standards NS2.1, AF2.1
Lesson Practice
4.2 Integer Exponents

Simplify the powers of 10.

1. 10^{-3}
2. 10^{3}
3. 10^{-5}
4. 10^{-2}
5. 10^{0}
6. 10^{4}
7. 10^{1}
8. 10^{5}

Simplify.
9. $(-6)^{-2}$
10. $(-9)^{-3}$
11. 2^{-5}
12. $(-3)^{-4}$
13. $(-12)^{-1}$
14. 6^{-3}
15. $10-(3+2)^{0}+2^{-1}$
17. $6(8-2)^{0}+4^{-2}$
19. $3(1-4)^{-2}+9^{-1}+12^{0}$
16. $15+(-6)^{0}-3^{-2}$
18. $2^{-2}+(-4)^{-1}$
\qquad
21. One milliliter equals 10^{-3} liter. Evaluate 10^{-3}.
22. The volume of a cube is 10^{6} cubic feet. Evaluate 10^{6}.

Name \qquad Date \qquad Class \qquad
California Standards NS2.1, NS2.3

Lesson Practice

4.3 Properties of Exponents

Simplify each expression. Write your answer in exponential form.

1. $10^{5} \cdot 10^{7}$
2. $x^{9} \cdot x^{8}$
3. $14^{7} \cdot 14^{9}$
4. $12^{6} \cdot 12^{8}$
5. $y^{12} \cdot y^{10}$
6. $15^{9} \cdot 15^{14}$
7. $(-11)^{20} \cdot(-11)^{10}$
8. $(-a)^{6} \cdot(-a)^{7}$
9. $\frac{12^{9}}{12^{2}}$
10. $\frac{(-11)^{12}}{(-11)^{8}}$
11. $\frac{x^{10}}{x^{5}}$
12. $\frac{16^{10}}{16^{2}}$
13. $\frac{17^{19}}{17^{2}}$
14. $\frac{14^{15}}{14^{13}}$
15. $\frac{23^{17}}{23^{9}}$
16. $\frac{(-a)^{12}}{(-a)^{7}}$
17. $\left(6^{2}\right)^{4}$
18. $\left(2^{4}\right)^{-3}$
19. $\left(-3^{5}\right)^{-1}$
20. $\left(y^{5}\right)^{2}$
21. $\left(9^{-2}\right)^{3}$
22. $\left(10^{0}\right)^{3}$
23. $\left(x^{4}\right)^{-2}$
24. $\left(5^{-2}\right)^{0}$

Write the product or quotient as one power.
25. $\frac{w^{12}}{w^{3}}$
26. $d^{8} \cdot d^{5}$
27. $(-15)^{5} \cdot(-15)^{10}$
28. Jefferson High School has a student body of 6^{4} students. Each class has approximately 6^{2} students. How many classes does the school have? Write the answer as one power.
29. Write the expression for a number used as a factor fifteen times being multiplied by a number used as a factor ten times. Then, write the product as one power.
\qquad Date \qquad Class \qquad
California Standards AF2.2, AF1.3

Lesson Practice

4-4 Multiplying and Dividing Monomials
Multiply.

1. $\left(3 c^{5}\right)\left(12 c^{3}\right)$
2. $\left(2 m^{10}\right)\left(8 m^{3}\right)$
3. $\left(4 r^{3} s^{2}\right)\left(6 r s^{2}\right)$
4. $\left(-3 a b^{4}\right)\left(2 a^{2} b\right)$
5. $\left(2 p^{2} q\right)(-6 p q)$
6. $\left(x^{4}\right)\left(4 x^{3} y\right)$

Divide. Assume no denominator equals zero.
7. $\frac{24 x^{7}}{3 x^{5}}$
8. $\frac{50 c^{9}}{5 c^{8}}$
9. $\frac{12 m^{2} n^{5}}{3 m n^{2}}$
10. $\frac{-16 x^{8} y^{2}}{4 x^{2} y}$
11. $\frac{18 p^{6} q}{-3 p q}$
12. $\frac{60 b^{2} c^{4}}{12 c^{4}}$

Simplify.
13. $\left(5 n^{3}\right)^{2}$
14. $\left(-2 c^{3}\right)^{3}$
15. $\left(3 a^{2} b\right)^{2}$

A triangle has a base of $4 m n$ inches and a height of $5 m^{2} n$ inches.
16. The area of a triangle is one-half the product of its base and height. Write and simplify an expression for the area of the triangle.
17. Find the area of the triangle when $m=2$ and $n=1$.
\qquad Date \qquad Class \qquad
California Standards NS1.1

Multiply.

1. $115.8 \cdot 10^{5}$
2. $1,316 \cdot 10^{2}$
3. $21.85 \cdot 10^{-4}$

Write each number in scientific notation.
4. 75,000,000
5. 208
6. 907,100
7. 56
8. 0.093
9. 0.00006
10. 0.00852
11. 0.0505
12. 0.003007

Write each number in standard form.
13. 2.54×10^{2}
14. 6.7×10^{-2}
15. 1.14×10^{3}
16. 3.8×10^{-1}
17. 7.53×10^{-3}
18. 5.6×10^{4}
19. 9.1×10^{5}
20. 6.08×10^{-4}
21. 8.59×10^{5}
22. 3.331×10^{6}
23. 7.21×10^{-3}
24. 5.88×10^{-4}
25. Jupiter is about $778,120,000$ kilometers from the Sun. Write this number in scientific notation.
\qquad
26. The E. coli bacterium is about 5×10^{-7} meters wide. A hair is about 1.7×10^{-5} meters wide. Which is wider, the bacterium or the hair?
\qquad Date \qquad Class \qquad
California Standards NS2.4, AF2.2

Lesson Practice
 4-6 Squares and Square Roots

Find the two square roots of each number.

1. 36
2. 81
3. 49
4. 100
5. 64
6. 121
7. 25
8. 144

Simplify each expression.
9. $\sqrt{81 m^{10}}$
10. $\sqrt{121 d^{16}}$
11. $\sqrt{49 k^{6}}$
12. $\sqrt{9 r^{8}}$
13. $\sqrt{144 s^{12}}$
14. $\sqrt{100 p^{4}}$
15. $\sqrt{y^{22}}$
16. $\sqrt{r^{36}}$

17. $\sqrt{169 s^{18}}$

18. $\sqrt{144 f^{14}}$
19. $\sqrt{36 n^{6}}$
20. $\sqrt{49 h^{14}}$

The Pyramids of Egypt are often called the first wonder of the world.
This group of pyramids consists of Menkaura, Khufu, and Khafra.
The largest of these is Khufu, sometimes called Cheops. During this time in history, each monarch had his own pyramid built to bury his mummified body. Cheops was a king of Egypt in the early 26th century B.C. His pyramid's original height is estimated to have been 482 ft . It is now approximately 450 ft . The estimated completion date of this structure was 2660 B.C.
21. If the area of the base of Cheops' pyramid is $570,025 \mathrm{ft}^{2}$, what is the length of one of the sides of the ancient structure?
(Hint: $s=\sqrt{A}$)
22. If a replica of the pyramid were built with a base area of $625 \mathrm{in}^{2}$, what would be the length of each side?
(Hint: $s=\sqrt{A}$)
\qquad Date \qquad Class \qquad
California Standards NS2.4

4.7 Estimating Square Roots

Each square root is between two integers. Name the integers. Explain your answer.

1. $\sqrt{6}$
2. $\sqrt{20}$
3. $\sqrt{28}$
4. $\sqrt{44}$

Approximate each square root to the nearest hundredth.
5. $\sqrt{130}$
6. $\sqrt{255}$
7. $\sqrt{208}$

Use a calculator to find each value. Round to the nearest tenth.
8. $\sqrt{14}$
9. $\sqrt{42}$
10. $\sqrt{21}$
11. $\sqrt{47}$
12. $\sqrt{58}$
13. $\sqrt{60}$
14. $\sqrt{35}$
15. $\sqrt{75}$

Police use the formula $r=2 \sqrt{5 L}$ to approximate the rate of speed in miles per hours of a vehicle from its skid marks, where L is the length of the skid marks in feet.
16. About how fast is a car going that leaves skid marks of 80 ft ?
17. About how fast is a car going that leaves skid marks of 245 ft ?
18. If the formula for finding the length of the skid marks is $L=\frac{r^{2}}{20}$, what would be the length of the skid marks from a vehicle traveling $80 \mathrm{mi} / \mathrm{h}$?
\qquad Date \qquad Class \qquad
California Standards \sim NS1.4
Lesson Practice
4:8 The Real Numbers
Write all classifications that apply to each number.

1. $-\frac{7}{8}$
2. $\sqrt{0.15}$
3. $\sqrt{\frac{18}{2}}$
\qquad
\qquad
\qquad
\qquad
4. $\sqrt{45}$
5. -25
6. -6.75
\qquad
\qquad
\qquad
\qquad
State if the number is rational, irrational, or not a real number.
7. $\sqrt{14}$
8. $-\sqrt{16}$
9. $\frac{6.2}{0}$
10. $\sqrt{49}$
11. $\frac{7}{20}$
12. $-\sqrt{81}$
13. $\sqrt{\frac{7}{9}}$
14. -1.3

Find a real number between each pair of numbers.
15. $7 \frac{3}{5}$ and $7 \frac{4}{5}$
16. 6.45 and $\frac{13}{2}$
17. $\frac{7}{8}$ and $\frac{9}{10}$
18. Give an example of a rational number between $-\sqrt{4}$ and $\sqrt{4}$
19. Give an example of an irrational number less than 0 .
20. Give an example of a number that is not real.
\qquad Date \qquad Class \qquad
California Standards \approx MG3.3

Lesson Practice

4-9 The Pythagorean Theorem

Use the Pythagorean Theorem to find each missing measure to the nearest tenth.

2.

3.

4.

5.

6.

Tell whether the given side lengths form a right triangle.
7. 12, 35, 37
8. $9,11,14$
9. 20, 21, 29
10. A glider flies 8 miles south from the airport and then 15 miles east. Then it flies in a straight line back to the airport. What was the distance of the glider's last leg back to the airport?
\qquad Date \qquad Class \qquad
California Standards Preparation for MG1.1
LESSON
Practice

5-1 Ratios
Write the ratio in simplest form.

1. 15 cows to 25 sheep
2. 24 cars to 18 trucks
3. 30 knives to 27 spoons
4. 34 mice to 17 cats
5. 9 feet to 84 inches
6. 12 notebooks to 20 pens
7. 44 students to 2 teachers
\qquad
8. 6 yards to 18 feet
9. 12 feet to 12 inches

Simplify to tell whether the ratios are equal.
10. $\frac{13}{39}$ and $\frac{16}{48}$
11. $\frac{21}{49}$ and $\frac{28}{56}$
12. $\frac{12}{28}$ and $\frac{18}{42}$
13. $\frac{18}{27}$ and $\frac{10}{15}$
14. $\frac{24}{27}$ and $\frac{27}{30}$
15. $\frac{14}{10}$ and $\frac{35}{25}$
16. $\frac{10}{32}$ and $\frac{25}{80}$
17. $\frac{16}{48}$ and $\frac{15}{45}$
18. Mrs. Walters wanted one daffodil plant for every 2 tulip plants in her garden. If she planted 20 daffodil bulbs, how many tulip bulbs did she plant?
\qquad
19. In a survey, 9 out of 10 doctors recommended a certain medicine. If 80 doctors were surveyed, how many doctors recommended the medicine?
20. A molecule of sodium carbonate contains 2 atoms of sodium to every 3 atoms of oxygen. Could a compound containing 12 atoms of sodium and 15 atoms of oxygen be sodium carbonate? Explain.
\qquad
\qquad
\qquad
California Standards MG1.3
LESSON

Practice

5-2 Rates and Unit Rates

1. Copper weighing 4480 kilograms has a volume of 0.5 cubic meters. What is the density of copper?
2. Yoshi's yogurt contains 15 calories per ounce. How many calories are in an 8-ounce container of Yoshi's yogurt?
3. Emily earns $\$ 7.50$ per hour. How much does she earn in 3 hours?
\qquad
Estimate the unit rate.
4. 43 apples in 5 bags
5. 146 students in 6 classes
6. 7 miles in 64 minutes
\qquad
Determine the lower unit price.
7. 8.2 oz of toothpaste for $\$ 2.99$ or 6.4 oz of toothpaste for $\$ 2.49$
8. a 3 lb bag of apples for $\$ 2.99$ or a 5 lb bag of apples for $\$ 4.99$
9. 16 oz bottle of soda for $\$ 1.25$ or 20 oz bottle of soda for $\$ 1.55$
10. Mavis rides the bus every day. She bought a bus pass good for the month of October for $\$ 38.75$. How much was Mavis charged per day for the bus pass?
\qquad Date \qquad Class \qquad
California Standards AF4.2

LESSON
 Practice

5-3 Proportions

Tell whether the ratios are proportional.

1. $\frac{3}{4} \stackrel{?}{=} \frac{9}{12}$
2. $\frac{9}{24} \stackrel{?}{ } \frac{18}{48}$
3. $\frac{16}{24} \stackrel{?}{ } \frac{10}{18}$
4. $\frac{13}{25} \stackrel{?}{ } \frac{26}{50}$
5. $\frac{10}{32} \stackrel{?}{=} \frac{16}{38}$
6. $\frac{20}{36} \stackrel{?}{=} \frac{50}{90}$
7. $\frac{20}{28} \stackrel{?}{=} \frac{28}{36}$
8. $\frac{14}{42} \stackrel{?}{=} \frac{16}{36}$

Solve each proportion.
9. $\frac{c}{15}=\frac{4}{10}$
10. $\frac{a}{6}=\frac{8}{12}$
11. $\frac{b}{20}=\frac{15}{12}$
12. $\frac{w}{6}=\frac{15}{10}$
13. Janessa bought 4 stamps for $\$ 1.48$. At this rate, how much would 10 stamps cost?
14. A karate team had 6 girls and 9 boys. Then 2 more girls and 3 more boys joined the team. Did the ratio of girls to boys stay the same? Explain.
15. A 30 kg weight is positioned 2 m from a fulcrum. At what distance from the fulcrum must a 40 kg weight be positioned to keep the scale balanced?
16. An electrician charges $\$ 51$ for 3 hours of work. How much would the electrician charge for 2 hours of work?
\qquad
\qquad Date \qquad
\qquad
California Standards mG1.3, -mF4.2, MG1.1

Lesson Practice

5-4 Dimensional Analysis

1. David takes 300 milligrams of medicine every day. How many grams is this?
2. Jody runs the 500-yard dash for his school's track team. How many feet does he run in each 500-yard dash?
3. Sean drinks six 12-ounce cans of soda a week. How many pints of soda does he drink in a week?
4. A recipe for punch requires diluting the punch concentrate with 7 quarts of water. How many gallons of water are required to dilute the concentrate according to the directions?
5. Jesse's dog Angel weighs $18 \frac{1}{2}$ pounds. How many ounces does Angel weigh?
6. A roll of tape contains 32.9 meters of tape. How many millimeters of tape does the roll contain?
7. There are two types of lifts in the sport of weightlifting, the snatch and the clean and jerk. Winners are determined by the combined weights of the two type of lifts. In the 2002 Collegiate Weightlifting Competition, Timothy Leancu from the U.S. Naval Academy competed in the 94-kilogram weight class. He lifted 100 kg in the snatch and 132.5 kg in the clean and jerk. What was the combined weight of his lifts in grams?

Name \qquad Date \qquad Class \qquad
California Standards Preparation for MG1.2

LESSON
 Practice

5-5 Similar Figures

1. Are any of these triangles similar?

2. A photo is 12 in . wide by 18 in . tall. If the width is scaled down to 9 inches, how tall should the similar photo be? \qquad
3. An isosceles triangle has a base of 20 cm and legs measuring 36 cm . How long are the legs of a similar triangle with base measuring 50 cm ?
4. A picture of a school's mascot is 18 in . wide and 24 in . long. It is enlarged proportionally to banner size. If the width is enlarged to 63 in., what is the length of the banner?
5. Carol has a $24 \mathrm{~cm} \times 36 \mathrm{~cm}$ photo that she reduces to $\frac{3}{4}$ of its size. What are the dimensions of the new photo?
6. Erik is drawing a picture of his school's basketball court. The actual basketball court is 84 ft long and 50 ft wide. If Erik draws the court with a length of 21 in., what will be the width?
7. The Henry Ford Museum in Dearborn, Michigan hosts a theater with one of the world's largest screens, which is $60 \mathrm{ft} \times 84 \mathrm{ft}$. If a classroom projection screen were changed to be in direct proportion with the screen at the Henry Ford Museum, the dimensions would be $5 \mathrm{ft} \times$ \qquad ft .
\qquad Date \qquad Class \qquad California Standards Extension of MG1.2

Lesson Practice

5-6 Indirect Measurement

1. Tamara wants to know the width of the pond at the park. She drew the diagram and labeled it with the measurements she made. How wide is the pond?

Use the diagram for 2 and 3.

2. How tall is the flagpole?

Use the diagram for 4 and 5.

4. How tall is the house?
5. The tree is 56 feet tall. How long is its shadow?
\qquad
6. Drew wants to know the distance across the river. He drew the diagram and labeled it with the measurements he made. What is the distance across the river?
7. A warehouse is 120 feet tall and casts a shadow 288 feet long. At the same time, Julie casts a shadow 12 feet long. How tall is Julie?
\qquad

Name \qquad Date \qquad Class \qquad
California Standards MG1.2

Lesson Practice

5-7 Scale Drawings and Scale Models
The scale of a drawing is $\frac{1}{4} \mathrm{in} .=15 \mathrm{ft}$. Find the actual measurement.

1. 9 in.
2. 12 in .
3. 14 in .
4. 15 in .

The scale is $2 \mathbf{c m}=25 \mathrm{~m}$. Find the length each measurement would be on a scale drawing.
5. 150 m
6. 475 m
7. 350 m
8. 500 m

Tell whether each scale reduces, enlarges, or preserves the size of an actual object.
9. $1 \mathrm{~m}: 25 \mathrm{~cm}$
10. 8 in. : 1 ft
11. 12 in. : 1 ft
12. On a map the distance between Atlanta, Georgia, and Nashville, Tennessee, is 12.5 in . The actual distance between these two cities is 250 miles. What is the scale?
13. Blueprints of a house are drawn to the scale of $\frac{1}{4} \mathrm{in} .=1 \mathrm{ft}$. A kitchen measures 3.5 in . by 5 in . on the blueprints. What is the actual size of the kitchen?
14. A scale model of a house is 1 ft long. The actual house is 50 ft long. In the model, the window is $1 \frac{1}{5}$ in. high. How many feet high is the actual window?
15. A model of a skyscraper is 1.6 in. long, 2.8 in. wide, and 11.2 in . high. The scale factor is $8 \mathrm{in} .: 250 \mathrm{ft}$. What are the actual dimensions of the skyscraper?
\qquad
\qquad
California Standards NS1.3
LESSON
6-1
Practice

Relating Fractions, Decimals, and Percents

Find the missing fraction or percent equivalent for each letter on the number line.

0%	a	22%	b	r	56%	64%	70%	d	100%
$\stackrel{1}{2}$	1		1	1	1	1	1		
0	$\frac{6}{100}$	m	$\frac{9}{25}$	$\frac{9}{20}$	t	c	x	$\frac{4}{5}$	1

1. a
2. b
3. c
4. d
5. m
6. r
7. t
8. x

Compare. Write $<,>$, or $=$.
9. $\frac{3}{4} \square 70 \%$
10. $60 \% \square \frac{3}{5}$
11. $58 \% \square 0.6$
12. $0.09 \square 15 \%$
13. $\frac{2}{3} \square 59 \%$
14. $0.45 \square 40.5 \%$

Order the numbers from least to greatest.
15. $99 \%, 0.95, \frac{5}{9}, 9.5 \%$
16. $\frac{3}{8}, 50 \%, 0.35,38 \%$
17. $\frac{4}{5}, 54 \%, 0.45,44.5 \%$
18. $\frac{1}{3}, 20 \%, 0.3,3 \%$
19. There are 25 students in math class. Yesterday, 6 students were absent. What percent of the students were absent?
20. Albert spends 2 hours a day on his homework and an hour playing video games. What percent of the day is this?
\qquad
\qquad
21. Ragu ran the first 3 miles of a 5 mile race in 24 minutes. What percent of the race has he run?
\qquad
\qquad
\qquad
California Standards NS1.3

Estimate.

1. 74% of 99
2. 25% of 39
3. 52% of 10
4. 21% of 50
5. 30% of 61
6. 24% of 48
7. 5% of 41
8. 50% of 178
9. 33% out of 62

Estimate.

10. 48% of 30 is about what number?
11. 30% of 22 is about what number?
12. 26% of 36 is about what number?
13. 21% of 63 is about what number?
\qquad
14. Rodney's weekly gross pay is $\$ 91$. He must pay about 32% in deductions. Estimate Rodney's weekly take-home pay after deductions.
15. In the last school election, 492 students voted. Mary received 48% of the votes. About how many votes did she receive?
16. A restaurant bill for lunch is $\$ 14.10$. Grace wants to leave a 15% tip. About how much will lunch cost Grace in all?
17. A company has found that on average about 6% of the batteries they manufacture are defective. Out of 1,385 batteries, the supervisor assumes that about 83 are defective. Estimate to determine if the manager's number is reasonable? Explain. \qquad
\qquad
\qquad Class \qquad
California Standards NS1.3

Lesson Practice

6-3 Finding Percents

Find each percent.

1. What percent of 84 is 21 ?
2. What percent of 150 is 75 ?
3. 36 is what percent of 80 ?
4. 19 is what percent of 95 ?
5. What percent of 56 is 49 ?
6. What percent of 94 is 42.3 ?
\qquad
7. 24 is what percent of 60 ?
8. What percent of 80 is 68 ?
\qquad
9. What percent of 88 is 33 ?
\qquad
10. 28.8 is what percent of 120 ?
11. What percent of 102 is 17 ?
12. 90 is what percent of 75 ?
\qquad
13. Daphne bought a used car for $\$ 9200$. She made a down payment of $\$ 1840$. Find the percent of the purchase price that is the down payment.
14. Tricia read $\frac{1}{4}$ of her book on Monday. On Tuesday, she read 36% of the book. On Wednesday, she read 0.27 of the book. She finished the book on Thursday. What percent of the book did she read on Thursday? \qquad
15. An airplane traveled from Boston to Las Vegas making a stop in St. Louis. The plane traveled 2410 miles altogether, which is 230% of the distance from Boston to St. Louis. Find the distance from Boston to St. Louis to the nearest mile. \qquad
16. The first social studies test had 16 questions. The second test had 220% as many questions as the first test. Find the number of questions on the second test.
\qquad
\qquad
California Standards NS1.3

LESSON
 6-4
 Practice
 Finding a Number When the Percent Is Known

Find each number to the nearest tenth.

1. 40% of what number is 18 ?
2. 21 is 60% of what number?
3. 40% of what number is 22 ?
4. 50 is 15% of what number?
5. 36 is 30% of what number?
6. 12.5% of what number is 14 ?
7. 27 is $33 \frac{1}{3} \%$ of what number?
8. 28 is 35% of what number?
9. 25% of what number is 19 ?
10. 41 is 50% of what number?
11. 0.3% of what number is 24 ?
12. 26 is 75% of what number?
13. 25% of what number is 28.25 ?
14. 54 is 150% of what number?
15. There were 546 students at a school assembly. This was 65% of all students who attend Content Middle School. How many students attend Content Middle School?
16. On his last test Greg answered 64 questions correctly. This was 80% of the questions. How many questions were on the test?
17. The price of a jacket at store A is $\$ 48$. If the price at store B is 5.5% higher, what is the price difference? What is the cost of the jacket at store B?
18. Carla has finished swimming 14 laps in swim practice. This is 70% of the total number of laps she must swim. How many more laps must Carla swim to complete her practice?
\qquad
\qquad
\qquad
California Standards NS1.6, NS1.7

Lessowl Practice

6-5 Applying Percent of Increase and Decrease
Find each percent increase or decrease to the nearest percent.

1. from 16 to 20
\qquad
2. from 35 to 21
3. from 40 to 46
\qquad
4. from 18 to 26.1
5. from 24.5 to 21.56
6. from 42 to 92.4
7. from 38 to 33
8. from 29 to 54
\qquad
9. from 64 to 36.4
10. from 78 to 136.5
11. from 89 to 32.9
12. Mr. Havel bought a car for $\$ 2400$ and sold it for $\$ 2700$. What was the percent of profit for Mr. Havel in selling the car? \qquad
13. A computer store buys a computer program for $\$ 24$ and sells it for \$91.20. What is the percent of increase in the price?
14. A manufacturing company with 450 employees begins a new product line and must add 81 more employees. What is the percent of increase in the number of employees? \qquad
15. Richard earns $\$ 2700$ a month. He received a 3% raise. What is Richard's new annual salary?
16. Marlis has 765 cards in her baseball card collection. She sells 153 of the cards. What is the percent of decrease in the number of cards in the collection? \qquad
\qquad Date \qquad Class \qquad
California Standards NS1.7, NS1.3
Lesson Practice
6-6 Commission, Sales Tax, and Profit

Complete the table to find the amount of sales tax for each sale amount to the nearest cent.

1. | Sale amount | 5\% sales tax | 8\% sales tax | 6.5\% sales tax |
| :---: | :---: | :---: | :---: |
| $\$ 67.50$ | | | |
| $\$ 98.75$ | | | |
| $\$ 399.79$ | | | |
| $\$ 1250.00$ | | | |

Complete the table to find the commission for each sale amount to the nearest cent.

2. | Sale amount | 6% commision | 9% commision | 8.5% commission |
| ---: | :--- | :--- | :--- |
| $\$ 475.00$ | | | |
| $\$ 2450.00$ | | | |
| $\$ 12,500.00$ | | | |
| $\$ 98,900.00$ | | | |
3. Alice makes bracelets and sells them for $\$ 5$ each. If it costs her $\$ 2$ to make a bracelet, what percent of the money she makes is profit?
4. Phillipe works for a computer store that pays a 12% commission and no salary. What will Phillipe's weekly sales have to be for him to earn $\$ 360$?
5. The purchase price of a book is $\$ 35.85$. The sales tax rate is 6.5%. How much is the sales tax to the nearest cent? What is the total cost of the book?
6. Who made more commission this month? How much did she make? Salesperson A made 11% of $\$ 67,530$. Salesperson B made 8% of $\$ 85,740$.
7. Jon earned $\$ 38,000$ last year. He paid $\$ 6,840$ towards entertainment. What percent of his earnings did Jon pay in entertainment expenses?
8. The Cougars won 62% of their games. They won 93 games. How many games did they lose?
\qquad Date \qquad Class \qquad
California Standards $2=$ NS1.7

Lesson
 Practice

6-7 Applying Simple and Compound Interest

Find the missing value.

1. principal $=\$ 125$
rate $=4 \%$
time $=2$ years
interest $=$?
2. principal $=\$ 150$
rate $=6 \%$
time $=$? years
interest $=\$ 54$
3. principal $=\$ 550$
rate $=$? \%
time $=3$ years
interest $=\$ 57.75$
4. principal $=$?
rate $=5 \%$
time $=4$ years
interest $=\$ 90$
5. principal $=\$ 200$
rate $=$?\%
time $=3$ years
interest $=\$ 30$
6. principal $=$?
rate $=3 \frac{1}{4} \%$
time $=2$ years
interest $=\$ 63.05$
\qquad
7. Kwang deposits money in an account that earns 5% simple interest. He earned $\$ 546$ in interest 2 years later. How much did he deposit?
8. Simon opened a certificate of deposit with the money from his bonus check. The bank offered 4.5% interest for 3 years of deposit. Simon calculated that he would earn $\$ 87.75$ interest in that time. How much did Simon deposit to open the account?
9. Douglas borrowed $\$ 1000$ from Patricia. He agreed to repay her $\$ 1150$ after 3 years. What was the interest rate of the loan?
10. Samantha invested $\$ 2000$ in a savings account that pays 5% interest compounded semi-annually. Find the value of the investment after 6 years.
\qquad Date \qquad Class \qquad California Standards Preparation for AF3.3

LESSON
 Practice

7-1 The Coordinate Plane
Identify the quadrant that contains each point.

1. A \qquad
2. B \qquad
3. C \qquad
4. D \qquad

Plot each point on a coordinate plane.
5. $(-4,0)$
6. $(3,-3)$
7. $(1,4)$
8. $(-5,-1)$
9. $(-2,2)$
10. $(-1,-4)$

Give the coordinates of each point.
11. P \qquad
12. Q \qquad
13. R \qquad
14. S \qquad
15. T \qquad
16. U \qquad

17. W \qquad
18. X \qquad
\qquad Date \qquad Class \qquad
California Standards Preparation for AF3.3
Lesson Practice
7-2 Functions
Find the output for each input.

1. $y=5 x-1$
2. $y=-2 x^{2}$

Input	Rule	Output
\boldsymbol{x}	$\mathbf{5 x}-\mathbf{1}$	\boldsymbol{y}
-2		
0		
3		
6		

Input	Rule	Output
\boldsymbol{x}	$-\mathbf{2 \boldsymbol { x } ^ { 2 }}$	\boldsymbol{y}
-2		
2		
3		
4		

3. $y=-2 x+5$

Input	Rule	Output
\boldsymbol{x}	$-2 \boldsymbol{x}+5$	\boldsymbol{y}
-2		
-1		
0		
1		
2		

4. $y=x-2$

Input	Rule	Output
x	$x-2$	y
-2		
-1		
0		
1		
2		

Determine if each relationship represents a function.
5. $y=\frac{1}{3} x-\frac{2}{5}$
6.

x	1	2	1	2
y	6	5	-6	-5

7.

x	\boldsymbol{y}
0	0
1	-1
2	-8
3	-27
4	-64

\qquad Date \qquad Class \qquad California Standards AF3.3, AF1.1

LESSON
 Practice

7-3 Graphing Linear Functions

Graph each linear function.

1. $y=-x-5$

Input	Linear Equation	Output	Ordered Pair
\boldsymbol{x}	$\boldsymbol{y}=-\boldsymbol{x}-\mathbf{5}$	\boldsymbol{y}	$(\boldsymbol{x}, \boldsymbol{y})$
-4			
-2			
0			

2. $y=2 x-1$

Input	Linear Equation	Output	Ordered Pair
\boldsymbol{x}	$\boldsymbol{y}=\mathbf{2 \boldsymbol { x } - \mathbf { 1 }}$	\boldsymbol{y}	$(\boldsymbol{x}, \boldsymbol{y})$
-2			
0			
1			

3. The temperature of a swimming pool is $75^{\circ} \mathrm{F}$. When the pool heater is turned on, the temperature rises 2° F every hour. What will the temperature be after 3 hours? Make a function table to answer the question.

4. Mel's Pizza Place charges $\$ 15.00$ for a large cheese pizza plus $\$ 1.25$ for each additional topping. What will be the cost of a large pizza with 3 additional toppings? Make a function table to answer the question.

\qquad
\qquad
\qquad
California Standards AF3.1

7-4 Graphing Quadratic Functions

Create a table for each quadratic function, and use it to make a graph.

1. $y=x^{2}-5$

\boldsymbol{x}	$\boldsymbol{y}=\boldsymbol{x}^{2}-5$
-3	$y=(-3)^{2}-5=4$
-1	
0	
2	
3	

2. $y=x^{2}-2 x+3$

x	$y=x^{2}-2 x+3$
3	
2	
1	
0	
-1	

3. Complete the table for the values $x=-3, x=0$, and $x=3$.

	$\boldsymbol{x}=-\mathbf{3}$	$\boldsymbol{x}=\mathbf{0}$	$\boldsymbol{x}=\mathbf{3}$
$y=x^{2}-2 x+1$			
$y=x^{2}-6$			
$y=x^{2}-x+3$			

4. The function $y=-4.9 t^{2}$ gives the distance in meters that an object will fall toward Earth in t seconds. Find the distance an object will fall in 1, 2, 3, 4, and 5 seconds. (Note that the distance traveled by a falling object is shown by a negative number.)
\qquad Date \qquad Class \qquad
California Standards AF3.1

7-5 Cubic Functions

Complete the table for each cubic function, and use it to graph the function.

1. $y=x^{3}-4$

x	$x^{3}-4$	y
-2		
-1		
0		
1		
2		

2. $y=x^{3}+3$

x	$x^{3}+3$	y
-2		
-1		
0		
1		
2		

Tell which of the following could be the graph of each equation. $y=2 x, y=2 x^{2}, y=-2 x^{2}, y=2 x^{3}$
3.

4.

6.

\qquad Date \qquad Class \qquad
California Standards A-AF3.3

Lesson Practice

7-6 Rate of Change and Slope

Determine whether each set of data has a constant or variable rate of change.
1.

x	0	3	4	5	7
y	2	5	6	7	9

3.

x	1	3	5	7	11
y	2	3	4	5	7

\qquad

Find the slope of each line.

Slope: \qquad

Find the value of a.
7.

2.

\boldsymbol{x}	0	4	6	7	8
\boldsymbol{y}	3	11	13	15	18

4.

x	3	5	7	10	13
y	0	4	8	11	14

6.

Slope: \qquad
8.

\qquad Date \qquad Class \qquad

Lesson Practice

7-7 Finding Slope of a Line

Find the slope of the line that passes through each pair of points.

1. $(-2,-8),(1,4)$
2. $(-2,0),(0,4)$
3. $(0,4),(4,4)$
4. $(3,-6),(2,-4)$
5. $(-3,4),(3,-4)$
6. $(3,0),(0,-6)$
7. $(3,2),(3,-2)$
8. $(-4,4),(3,-1)$
9. $(-5,-6),(3,-6)$
10. $(-6,-9),(4,-1)$
11. $(7,-1),(6,2)$
12. $(-2,-1),(-3,-6)$
13. The table shows the distance Ms. Long had traveled as she went to the beach. Use the data to make a graph. Find the slope of the line and explain what it shows.

Time (min)	Distance (mi)
8	6
12	9
16	12
20	15

\qquad
\qquad
\qquad
\qquad

\qquad Date \qquad Class \qquad
California Standards AF1.5

Lesson Practice

7-8 Interpreting Graphs

1. The gas tank in Karen's car was full. Karen drove the car until only $\frac{1}{4}$ of the tank was full. Karen filled up the tank again and drove the car until $\frac{1}{4}$ of the tank was full. Which graph best shows the story? Circle the letter of your answer.
A

B

Time
2. An elevator started at the ground floor. It went up to the sixth floor and stopped, then went to the fourth floor and stopped, and finally returned to the ground floor. Which graph best shows the story? Circle the letter of your answer.
F

Time
H

Time
3. Maxine biked 6 miles from her house to the park. She played some softball. Then she biked 4 miles farther to the movie theater. After watching a movie, Maxine returned home. Sketch the graph so that it shows the distance Maxine is from home compared to the time.

\qquad Date \qquad Class \qquad
California Standards AF4.2, AF3.3, AF3.4

Practice

7-9 Direct Variation

Make a graph to determine whether the data sets show direct variation.
1.

x	y
6	9
4	6
0	0
-2	-3
-8	-12

2. Write the equation of direct variation for Exercise 1.
3. Reynaldo ordered 12 large pepperoni pizzas. The total cost was $\$ 101.40$. Write a direct variation function for the cost of one large pepperoni pizza. How much would 5 large pepperoni pizzas cost?
4. Randall earns $\$ 460$ for working a 40 -hour work week. Write a direct variation function for the amount that Randall earns in one hour. How much money would Randall earn if he only worked 28 hours in one week?
5. The table shows the length and width of various U.S. flags.

Determine whether there is direct variation between the two data sets. If so, find the equation of direct variation.

Length (ft)	2.85	5.7	7.6	9.88	11.4
Width (ft)	1.5	3	4	5.2	6

\qquad Date \qquad Class \qquad California Standards Preparation for MG3.1

Lesson Practice

8-1 Points, Lines, Planes, and Angles

Use the diagram to name each figure.

1. four points
2. a line
3. a plane

4. three segments
\qquad

Use the diagram to name each figure.
6. a right angle
7. two acute angles
8. two obtuse angles
\qquad
9. a pair of complementary angles
\qquad
\qquad
\qquad

Name \qquad Date \qquad Class \qquad
California Standards MG3.6

LESSON
 Practice

8-2 Geometric Relationships

Identify two lines that have the given relationship.

1. parallel lines \qquad
2. perpendicular lines \qquad
3. skew lines \qquad

Identify two lines that have the given relationship.
4. parallel lines \qquad
5. perpendicular lines \qquad
6. skew lines \qquad

Identify two planes that appear to have the given relationship.
7. parallel planes \qquad
8. perpendicular planes
9. neither parallel nor perpendicular \qquad

Identify two planes that appear to have the given relationship.
10. parallel planes
11. perpendicular planes
\qquad
13. In Center City, Grove Street is parallel to Market Street. Addison

Street is perpendicular to Grove
Street. Carter Street is neither parallel
nor perpendicular to Addison Street.
Draw and label a map showing the streets in the space provided.
\qquad
\qquad
\qquad
California Standards Review of 6MG2.2, 6MG2.1

LESSON
 Practice

8-3 Angle Relationships

In the figure, $\angle 1$ and $\angle 3$ are vertical angles, and $\angle 2$ and $\angle 4$ are vertical angles.

1. If $m \angle 2=110^{\circ}$, find $m \angle 4$.
2. If $m \angle 1=n^{\circ}$, find $m \angle 3$.

In the figure, line m || line n. Find the measure of each angle.
3. $\angle 1$
4. $\angle 2$
5. $\angle 5$
\qquad
\qquad
\qquad
6. $\angle 6$
7. $\angle 8$
8. $\angle 7$

In the figure, line $a \|$ line b. Find the measure of each angle.
9. $\angle 2$
10. $\angle 5$
11. $\angle 6$
\qquad
13. $\angle 4$
14. $\angle 3$
\qquad
\qquad
\qquad
California Standards MG3.3, Review of 6MG2.2
LESSON
Practice
8-4 Triangles

1. Find x° in the right triangle.

\qquad
2. Find n° in the obtuse triangle.

3. Find t° in the scalene triangle.

\qquad
4. Find y° in the obtuse triangle.

5. Find w° in the acute triangle.

6. Find x° in the isosceles triangle.

7. Find m° in the acute triangle.

\qquad
8. Find t° in the right triangle.

\qquad
9. Find n° in the scalene triangle.

10. In the figure, M is the midpoint of $\overline{J K}$ and $\overline{L M}$ is perpendicular to $\overline{J K}$. Find the length of $\overline{L M}$.
\qquad 10 in.

11. The second angle in a triangle is one third as large as the first. The third angle is two thirds as large as the first angle. Find the angle measures. Draw a possible picture of the triangle.
\qquad Date \qquad Class \qquad
California Standards MG3.2, AFAF3.3

LESSON
 Practice

8-5 Coordinate Geometry

Determine if the slope of each line is positive, negative, 0 , or undefined. Then find the slope of each line.

1. $\overleftrightarrow{A B}$
2. $\stackrel{\rightharpoonup}{C D}$
3. $\overleftrightarrow{R S}$
4. $\overleftrightarrow{T C}$
5. $\overleftrightarrow{D R}$
6. $\overleftrightarrow{T X}$
\qquad
\qquad

7. Which lines are parallel?
8. Which lines are perpendicular?

Graph the quadrilateral with the given vertices. Write all the names that apply to the quadrilateral.
9. $(-1,1),(4,1),(1,-3),(-4,-3)$

Find the coordinates of the missing vertex.
10. rhombus $A B C D$ with $A(0,4), B(4,1)$, and $C(0,-2)$

\qquad Date \qquad
\qquad
California Standards MG3.4
LESSON
Practice
8-6 Congruent Polygons

Write a congruence statement for each pair of polygons.

1.

2.

3.

4.

In the figure, triangle $P R T \cong$ triangle $F J H$.
5. Find a.
6. Find b.
7. Find c.
8. Find x.

9. Find y.
10. Find z.
\qquad
\qquad
California Standards MG3.2

LESSON
 Practice
 8-7 Transformations

Identify each type of transformation.

1.

Graph each translation.
3. 5 units to the left and 2 units up

2.

4. 4 units to the right and 3 units up

Graph the reflection of each figure across the indicated axis. Write the coordinates of the vertices of the image.
5. x-axis

7. Triangle $D E F$ has vertices at $D(-2$, $-1), E(-2,-3)$, and $F(-5,-3)$.
Rotate $\triangle D E F 90^{\circ}$ clockwise about the vertex D.
6. y-axis

Name \qquad Date \qquad Class \qquad
California Standards Extension of MG3.2
Lesson Practice
8-8 Tessellations
1.Create a tessellation with quadrilateral $A B C D$.

2. Use rotations to create a variation of the tessellation in Exercise 1.
3. Create a tessellation with hexagon $A B C D E F$.

4. Use rotations to create a variation of the tessellation in Exercise 3.
\qquad Date \qquad Class \qquad
California Standards MG2.1, MG2.2, MG2.4, MG3.2
LESSON
Practice

9-1 Perimeter and Area of Parallelograms

Find the perimeter of each figure.

1.

2.

3.

Graph and find the area of each figure with the given vertices.
4. $(-3,4),(3,4),(3,-4),(-3,-4)$
5. $(-1,3),(2,3),(-1,-4),(-4,-4)$

6. Find the perimeter and area of the figure.

\qquad Date \qquad Class \qquad
California Standards MG2.1, MG3.2
LESSON
Practice

9-2 Perimeter and Area of Triangles and Trapezoids

Find the missing measurement for each figure with the given perimeter.

1. $P=22.8 \mathrm{~cm}$

2. $P=11 c+5 \mathrm{mi}$

3. $P=54$ units

4. $P=34$ units

Graph and find the area of each figure with the given vertices.
5. $(-1,3),(4,3),(4,-4),(-4,-4)$
6. $(-1,2),(-4,-2),(4,-2)$

7. The two shortest sides of a pennant shaped like a right triangle measure 10 inches and 24 inches. Hank wants to put colored tape around the edge of the pennant. How many inches of tape does he need?
\qquad Date \qquad Class \qquad
California Standards MG3.1

LEsSon Practice

9-3 Circles

Name the parts of circle A.

1. radii \qquad
2. diameters \qquad
3. chords \qquad

Name the parts of circle H.
4. radii \qquad
5. diameters \qquad
6. chords \qquad

Name the parts of circle C.
7. radii \qquad
8. diameters \qquad
9. chords \qquad

Name the parts of circle Z.
10. radii \qquad
11. diameters \qquad
12. chords \qquad

New Zealand Population

\qquad Date \qquad Class \qquad
California Standards MG2.1
LESSON
Practice

9-4 Circumference and Area

Find the circumference of each circle, both in terms of π and to the nearest tenth. Use $\mathbf{3 . 1 4}$ for π.

1. circle with radius 10 in.
2. circle with diameter 13 cm
3. circle with diameter 18 m
4. circle with radius 15 ft
5. circle with radius 11.5 in.
6. circle with diameter 16.4 cm

Find the area of each circle, both in terms of π and to the nearest tenth. Use 3.14 for π.
7. circle with radius 9 in.
9. circle with radius 20 ft
11. circle with diameter 15.4 m
13. Graph a circle with center $(0,0)$ that passes through $(0,-3)$. Find the area and circumference, both in terms of π and to the nearest tenth. Use 3.14 for π.
\qquad
\qquad
10. circle with diameter 17 m
12. circle with radius 22 yd

14. A wheel has a radius of $2 \frac{1}{3}$ feet. About how far does it travel if it makes 60 complete revolutions? Use $\frac{22}{7}$ for π.
\qquad Date \qquad Class \qquad
California Standards MG2.2

9-5 Area of Composite Figures

Find the shaded area. Round to the nearest tenth, if necessary.
1.

2.

4.

5.

6.

7. Nate is covering the garden plot shown at right with mulch. What is the area of the plot to the nearest tenth of a square foot?
\qquad
8. Suki designed the logo shown at right for a publishing company. Find the area of the logo to the nearest tenth of a square centimeter.

\qquad

\qquad Date \qquad
\qquad
California Standards MG2.2
LESSON
Practice
9-6 Area of Irregular Figures
Find the area of each figure.
1.

2.

3.

4.

5.

6.

Use a composite figure to estimate the shaded area.
7.

8.

9.

The figure shows an irregular area that is part of Elena's garden. She wants to cover the area with pebbles.
10. Estimate the area that is to be covered with pebbles.
11. It costs $\$ 3$ per square foot to cover an area of the garden with pebbles. How much should Elena plan to spend on the pebbles?

$\square=1 \mathrm{ft}^{2}$ Explain.
\qquad
\qquad Date \qquad Class \qquad
California Standards Preparation for MG2.1

Practice

10-1 Three-Dimensional Figures

Describe the base or bases of each figure. Then name the figure.
1.

2.

3.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
4.

5.

6.

Classify each figure as a polyhedron or not a polyhedron. Then name the figure.
7.

8.

9.

10.

11.

\qquad
\qquad
\qquad
\qquad
12.

\qquad Date \qquad Class \qquad
California Standards MG2.1, MG2.4

10-2 Volume of Prisms and Cylinders

Find the volume of each figure to the nearest tenth. Use 3.14 for π.
1.

2. 6.5 cm

3.

4.

5.

6.

7.

8.

9.

10. A cylinder has a radius of 6 ft and a height of 25 ft . Explain whether tripling the height will triple the volume of the cylinder.
\qquad
\qquad
11. Contemporary American building bricks are rectangular blocks with the standard dimensions of about 5.7 cm by 9.5 cm by 20.3 cm . What is the volume of a brick to the nearest tenth of a unit?
12. Ian is making candles. His cylindrical mold is 8 in. tall and has a base with a diameter of 3 in . Find the volume of a finished candle to the nearest tenth of a unit.
\qquad Date \qquad Class \qquad California Standards Extension of MG2.1

Practice
 Lesson Practice

10-3 Volume of Pyramids and Cones
Find the volume of each figure to the nearest tenth. Use 3.14 for π.
1.

2.

3.

4.

5.

18 ft
6.

7. The base of a regular pyramid has an area of $28 \mathrm{in}^{2}$. The height of the pyramid is 15 in . Find the volume.
8. The radius of a cone is 19.4 cm and its height is 24 cm . Find the volume of the cone to the nearest tenth. \qquad
9. Find the volume of a rectangular pyramid if the height is 13 m and the base sides are 12 m and 15 m . \qquad
10. A funnel has a diameter of 9 in . and is 16 in . deep. Use a calculator to find the volume of the funnel to the nearest hundredth.
11. A square pyramid has a height 18 cm and a base that measures 12 cm on each side. Find the volume.
\qquad Date \qquad Class \qquad
California Standards MG2.1, MG2.2, MG2.3

Lesson Practice

10-4 Surface Area of Prisms and Cylinders

Find the surface area of each figure. The figure is made up of congruent cubes.
1.

2.

3.

4.

5.

6.

7.

8.

9.

10. Find the surface area to the nearest tenth of a rectangular prism with height 15 m and sides 14 m and 13 m .
11. Find the surface area to the nearest tenth of a cylinder 61.7 ft tall that has a diameter of 38 ft .
12. Henry wants to paint the ceiling and walls of his living room. One gallon of paint covers $450 \mathrm{ft}^{2}$. The room is 24 ft by 18 ft , and the walls are 9 ft high. How many full gallons of paint will Henry need to paint his living room?
13. A rectangular prism is 18 in . by 16 in . by 10 in . Explain the effect, if any, tripling all the dimensions will have on the surface area of the figure.
\qquad Date \qquad Class \qquad

\section*{Practice}
 Lesson Pract
 10-5 Surface Area of Pyramids and Cones

Find the surface area of each figure to the nearest tenth.

Use 3.14 for π.

1. 12 ft

2.

3.

4.

5.

6.

7.

8.

9.

10. Find the surface area of a regular square pyramid with a slant height of 17 m and a base perimeter of 44 m .
11. Find the length of the slant height of a square pyramid if one side of the base is 15 ft and the surface area is $765 \mathrm{ft}^{2}$.
12. Find the length of the slant height of a cone with a radius of 15 cm and a surface area of $1884 \mathrm{~cm}^{2}$.
13. A cone has a diameter of 12 ft and a slant height of 20 ft . Explain whether tripling both dimensions would triple the surface area.
\qquad
\qquad
\qquad
\qquad Date \qquad Class \qquad
California Standards Extension of MG2.1

LESSON
 Practice

10-6 Spheres
Find the volume of each sphere, both in terms of π and to the nearest tenth. Use 3.14 for π.

1. $r=9 \mathrm{ft}$
2. $r=21 \mathrm{~m}$
3. $d=30 \mathrm{~cm}$
\qquad
\qquad
\qquad
\qquad
4. $d=24 \mathrm{~cm}$
5. $r=15.4$ in.
6. $r=16.01 \mathrm{ft}$
\qquad
\qquad
\qquad
\qquad
\qquad
Find the surface area of each sphere, both in terms of π and to the nearest tenth. Use 3.14 for π.
7.

8.

9.

10.

11.

12.

13. In the sport of track and field, a field event is the shot put. This is a game in which a heavy ball or shot is thrown or put for distance. The shot itself comes in various sizes, weights and composition. Find the volume and surface area of a shot with diameter 5.5 cm both in terms of π and to the nearest tenth.
\qquad Date \qquad Class \qquad
California Standards MG2.3

Practice
 LESSON

10-7 Scaling Three-Dimensional Figures
A 10 in. cube is built from small cubes, each 2 in. on a side. Compare the following values.

1. The side lengths of the two cubes
2. The surface area of the two cubes
3. The volumes of the two cubes

A 9 cm cube is built from small cubes, each 3 cm on a side. Compare the following values.
4. The side lengths of the two cubes
5. The surface area of the two cubes
6. The volumes of the two cubes
7. The surface area of a bucket is $6176 \mathrm{~cm}^{2}$. What is the surface area of a similar bucket that is smaller by a scale of $\frac{1}{4}$?
\qquad
8. The volume of a cone is $316 \mathrm{in}^{3}$. What is the volume of a similar cone that is larger by a scale of 3 ?
\qquad
9. It takes a machine 40 seconds to fill a cubic box with sides measuring 10 in . How long will it take the same machine to fill a cubic box with sides measuring 15 in.?
\qquad Date \qquad Class \qquad
California Standards SDAP1.1

LESSON Practice
 11-1 Line Plots and Stem-and-Leaf Plots

The table shows the heights of students in Ms. Blaire's class.
Use the table for Exercises 1 and 2.

Height (in.)	
Males	$60,45,48,57,62,59,57,60,56,58,61,52,55$
Females	$49,52,56,48,51,60,47,53,55,58,54$

1. Make a line plot of the data.

2. Which height occurred the greatest number of times? \qquad
3. Make a stem-and-leaf plot of the data.

Height of Students

Stem	Leaves

Key:
4. How many of the students were less than 50 in. tall? \qquad
5. Use the given data to make a back-to-back stem-and-leaf plot.

NBA Midwest Division 2000-2001 Final Standings

NBA Team	Wins	Losses	NBA Team	Wins	Losses
San Antonio Spurs	58	24	Houston Rockets	45	37
Utah Jazz	53	29	Denver Nuggets	40	42
Dallas Mavericks	53	29	Vancouver Grizzlies	23	59
Minnesota Timberwolves	47	35			

Key:
\qquad Date \qquad Class \qquad California Standards SDPAP1.3

LESSON
 Practice

11-2 Mean, Median, Mode, and Range

Find the mean, median, mode, and range of each data set.

1. $46,35,23,37,29,53,43$
2. $72,56,47,69,75,48,56,57$
3. $19,11,80,19,27,19,10,25,15$
4. $7,8,20,6,9,11,10,8,9,8$
5. The line plot shows the number of hours 15 students said they spent on homework in one week. Does the mean or median best describe the data? Justify your answer.

Identify the outlier in each data set. Then determine how the outlier affects the mean, median, and mode of the data.
6. $14,16,13,15,5,16,12$
\qquad
\qquad
7. $48,46,52,92,57,58,52,61,56$

Date \qquad Class \qquad
California Standards SDAP1.1, SDAP1.3

LesSon
 Practice

11-3 Box-and-Whisker Plots

Find the lower and upper quartiles for each data set.

1. $37,48,56,35,53,41,50$
lower quartile: \qquad
upper quartile: \qquad
2. $18,20,34,33,16,44,42,27$
lower quartile: \qquad
upper quartile: \qquad

Use the given data to make a box-and-whisker plot.
3. $55,46,70,36,43,45,52,61$

4. $23,34,31,16,38,42,45,30,28,25,19,32,53$

Use the box-and-whisker plots to compare the data sets.

5. Compare the medians and ranges.
6. Compare the ranges of the middle half of the data for each set.
\qquad
\qquad
\qquad Date \qquad Class \qquad
California Standards SDAP1. 2

Lesson Practice
 11-4 Scatter Plots

1. Use the given data to make a scatter plot.

Tall Buildings in the U.S.

Building	Stories	Height (meters)
Sears Tower	110	442
Empire State Building	102	381
Bank of America Plaza	55	312
Library Tower	75	310
Key Tower	57	290
Columbia Seafirst Center	76	287
NationsBank Plaza	72	281
NationsBank Corporate Center	60	265

Tall Buildings in the U.S.

Write positive, negative, or no correlation to describe each relationship.
2.

3.

4. Use the data to predict the percent of Americans owning a home in 1955.

Percent of Americans Owning Homes

Year	1950	1960	1970	1980	1990
Percent	55.0%	61.9%	62.9%	64.4%	64.2%

According to the data, about \qquad \% of Americans owned a home in 1955.
\qquad Date \qquad Class \qquad
California Standards Review of 4 6SDAP3.3

Lesson Practice

11-5 Probability
These are the results of the last math test. The teacher determines that anyone with a grade of more than 70 passed the test. Give the probability for the indicated grade.

Grade	65	70	80	90	100
\# of Students	5	3	12	10	2

1. $P(70)$
2. $P(100)$
3. $P(80)$
4. P (passing)
5. P (grade >80)
6. $P(60)$
7. P (failing)
8. $P($ grade $\leq 80)$

A bowling game consists of rolling a ball and knocking up to 5 pins down. The number of pins knocked down are then counted. The table gives the probability of each outcome.

Number of Pins Down	0	1	2	3	4	5
Probability	0.175	0.189	0.264	0.205	0.132	0.035

9. What is the probability of knocking down all 5 pins?
\qquad
10. What is the probability of knocking down no pins?
\qquad
11. What is the probability of knocking down at most 2 pins?
\qquad
12. What is the probability of knocking down at least 2 pins?
13. What is the probability of knocking down more than 3 pins?
\qquad Date \qquad Class \qquad
California Standards Review of 6SDAP3.2 and 6SDAP3.3

LESSON
 Practice

11-6 Experimental Probability

1. A number cube was thrown 150 times. The results are shown in the table below. Estimate the probability for each outcome.

Outcome	1	2	3	4	5	6
Frequency	33	21	15	36	27	18
Probability						

A movie theater sells popcorn in small, medium, large and jumbo sizes. The customers of the first show purchase 4 small, 20 medium, 40 large, and 16 jumbo containers of popcorn. Estimate the probability of the purchase of each of the different size containers of popcorn.
2. P (small container)
3. P (medium container)
4. P (large container)
5. P (jumbo container)

Janessa polled 154 students about their favorite winter sport.

Outcome	Frequency
Skiing	46
Sledding	21
Snowboarding	64
Ice Skating	14
Other	9

6. Use the table to compare the probability that a student chose snowboarding to the probability that a student chose skiing.
7. Use the table to compare the probability that a student chose ice skating to the probability that a student chose sledding.
\qquad
8. The class president made 75 copies of the flyer advertising the school play. It was found that 8 of the copies were defective.
Estimate the probability that a flyer will be printed properly.
\qquad Date \qquad Class \qquad
California Standards Review of 6SDAP3.1, 6SDAP3.3, and 6SDAP3.4

Practice

11-7 Theoretical Probability

An experiment consists of rolling one fair number cube.
Find the probability of each event.

1. $P(3)$
2. $P(7)$
3. $P(1$ or 4$)$
4. $P(\operatorname{not} 5)$

$$
\text { 5. } P(<5)
$$

6. $P(>4)$
7. $P(2$ or odd $)$
8. $P(\leq 3)$

An experiment consists of rolling two fair number cubes. Find the probability of each event.
9. $P($ total shown $=3)$
10. P (total shown $=7)$
11. P (total shown $=9)$
12. $P($ total shown $=2)$
13. P (total shown $=4)$
14. $P($ total shown $=13)$
15. P (total shown >8)
16. P (total shown ≤ 12)
17. P (total shown <7)
18. A bag contains 9 pennies, 8 nickels, and 5 dimes. How many quarters should be added to the bag so the probability of drawing a dime is $\frac{1}{6}$?
19. In a game two fair number cubes are rolled. To make the first move, you need to roll a total of 6,7 , or 8 . What is the probability that you will be able to make the first move?
\qquad Date \qquad Class \qquad
California Standards Review of 6SDAP3.5, 6SDAP3.3, and 6SDAP3.4

Practice
 11-8 Independent and Dependent Events

Determine if the events are dependent or independent.

1. choosing a tie and shirt from the closet
2. choosing a month and tossing a coin
3. rolling two fair number cubes once, then rolling them again if you received the same number on both number cubes on the first roll

An experiment consists of rolling a fair number cube and tossing a fair coin.
4. Find the probability of getting a 5 on the number cube and tails on the dime.
5. Find the probability of getting an even number on the number cube and heads on the dime.
6. Find the probability of getting a 2 or 3 on the number cube and heads on the dime.

A box contains 3 red marbles, 6 blue marbles, and 1 white marble. The marbles are selected at random, one at a time, and are not replaced. Find the probability.
7. P (blue and red)
8. P (white and blue)
9. P (red and white)
10. P (red and white and blue)
11. $P($ red and red and blue)
12. P (red and blue and blue)
13. P(red and red and red)
14. P (white and blue and blue)
15. P (white and red and white)
\qquad Date \qquad Class \qquad
California Standards Preview of and Preparation for 1A10.0; 7AF1.2

LESSON
 Practice

12-1 Polynomials

Determine whether each expression is a monomial.

1. $-135 x^{5}$
2. $2.4 x^{3} y^{19}$
3. $\frac{2 p^{2}}{q^{3}}$
4. $3 r^{\frac{1}{2}}$
5. $43 a^{2} b^{6.1}$
6. $\frac{7}{9} x^{2} y z^{5}$

Classify each expression as a monomial, a binomial, a trinomial, or not a polynomial.
7. $-8.9 x y+\frac{6}{y^{5}}$
8. $\frac{9}{8} a b^{8} c^{2} d$
9. $x^{8}+x+1$
10. $-7 p q^{-2} r^{4}$
11. $5 n^{15}-9 n+\frac{1}{3}$
12. $r^{8}-5.5 r^{75}$

Find the degree of each polynomial.
13. $7-14 x$
14. $5 a+a^{2}+\frac{6}{7} a^{3}$
15. $7 w-16 u+3 v$
16. $9 p-9 q-9 p^{3}-9 q^{2}$
17. $z^{9}+10 y^{8}-x$
18. $100,050+\frac{4}{5} k-k^{4}$
19. The volume of a box with height x, length $x-1$, and width $2 x+2$ is given by the binomial $2 x^{3}-2 x$. What is the volume of the box if its height is 4 feet?
\qquad
20. The trinomial $-16 t^{2}+32 t+32$ describes the height in feet of a ball thrown upward after t seconds. What is the height of the ball $\frac{5}{8}$ seconds after it was thrown?
\qquad Date \qquad Class \qquad
California Standards Preview of and Preparation for 1A10.0; 7AF1.3

(1) Lesson Practice
 12-2 Simplifying Polynomials

Identify the like terms in each polynomial.

1. $x^{2}-8 x+3 x^{2}+6 x-1$
2. $2 c^{2}+d^{3}+3 d^{3}-2 c^{2}+6$
3. $2 x^{2}-2 x y-2 y^{2}+3 x y+3 x^{2}$
4. $x y-5 x+y-x+10 y-3 y^{2}$
5. $3 a+2 b+a^{2}-5 b+7 a$
\qquad
\qquad

Simplify.
9. $2 h-9 h k+6 h-6 k$
10. $9\left(x^{2}+2 x y-y^{2}\right)-2\left(x^{2}+x y\right)$
11. $7 q r-q^{2} r^{3}+2 q^{2} r^{3}-6 q r$
12. $8 v^{4}+3 v^{2}+2 v^{2}-16$
13. $3(x+2 y)+2(2 x-3 y)$
14. $7(1-x)+3 x^{2} y+7 x-7$
15. $6(9 y+1)+8(2-3 y)$
16. $a^{2} b-a^{2}+a b^{2}-3 a^{2} b+a b$
17. A student in Tracey's class created the following expression: $y^{3}-3 y+4\left(y^{2}-y^{3}\right)$. Use the Distributive Property to write an equivalent expression.
\qquad

Name \qquad Date \qquad Class \qquad
California Standards Preview of 1A10.0; 7AF1.3
LESSON

Practice

12-3 Adding Polynomials

Add.

1. $\left(a^{2}+a+3\right)+\left(15 a^{2}+2 a+9\right)$
2. $\left(5 x+2 x^{2}\right)+\left(3 x-2 x^{2}\right)$
3. $\left(m n-10+m n^{2}\right)+\left(5+3 m n-4 m n^{2}\right)$
4. $\left(7 y^{2} z+9+y z^{2}\right)+\left(y^{2} z-2 y z^{2}\right)$
5. $\left(s^{3}+3 s-3\right)+\left(2 s^{3}+9 s-2\right)+\left(s-s^{3}\right)$
\qquad
6. $\left(6 w v-4 w^{2} v+7 w v^{2}\right)+\left(5 w^{2} v-7 w v^{2}\right)+\left(w v^{2}-5 w v+6 w^{2} v\right)$
\qquad
7. $\left(6 b^{2} c^{2}-4 b^{2} c+3 b c\right)+\left(9 b^{2} c^{2}-4 b c+12\right)+\left(2 b^{2} c-3 b c-8\right)$
8. $\left(7 e^{2}+3 e+2\right)+\left(9-6 e+4 e^{2}\right)+\left(9 e+2-6 e^{2}\right)+\left(4 e^{2}-7 e+8\right)$
9. $\left(f^{4} g-f g^{3}+2 f g-4\right)+\left(3 f g^{3}+3\right)+\left(4 f^{4} g-5 f g\right)+\left(3-12 f g^{3}+f^{4} g\right)$
10. Six blocks of height $4 h+4$ each and 3 blocks of height $8-2 h$ each are stacked on top of each other to form one big tower. Find an expression for the overall height of the tower.
\qquad Date \qquad Class \qquad
California Standards Preview of 1A10.0; 7AF1.3

Lesson Practice
 12-4 Subtracting Polynomials

Find the opposite of each polynomial.

1. $18 x y^{3}$
2. $-9 a+4$
3. $6 d^{2}-2 d-8$

Subtract.

4. $\left(4 n^{3}-4 n+4 n^{2}\right)-\left(6 n+3 n^{2}-8\right)$
5. $\left(-2 h^{4}+3 h-4\right)-\left(2 h-3 h^{4}+2\right)$
6. $\left(6 m+2 m^{2}-7\right)-\left(-6 m^{2}-m-7\right)$
7. $\left(17 x^{2}-x+3\right)-\left(14 x^{2}+3 x+5\right)$
8. $w+7-\left(3 w^{4}+5 w^{3}-7 w^{2}+2 w-10\right)$
9. $\left(9 r^{3} s-3 r s+4 r s^{3}+5 r^{2} s^{2}\right)-\left(2 r s^{2}-2 r^{2} s^{2}+6 r s+7 r^{3} s-9\right)$
10. $\left(3 q r^{2}-2+14 q^{2} r^{2}-9 q r\right)-\left(-10 q r+11-5 q r^{2}+6 q^{2} r^{2}\right)$
11. The volume of a rectangular prism, in cubic meters, is given by the expression $x^{3}+7 x^{2}+14 x+8$. The volume of a smaller rectangular prism is given by the expression $x^{3}+5 x^{2}+6 x$. How much greater is the volume of the larger rectangular prism?
12. Sarah has a table with an area, in square inches, given by the expression of $y^{2}+30 y+200$. She has a tablecloth with an area, in square inches, given by the expression of $y^{2}+18 y+80$. She wants the tablecloth to cover the top of the table. What expression represents the number of square inches of additional fabric she needs to cover the top of the table?
 \qquad Date \qquad Class \qquad California Standards Preview of an 1A10.0; 7AF1.2, $\operatorname{7AF1.3}, 7 A F 2.2$

Lesson Practice
12-5 Multiplying Polynomials by Monomials
Multiply.

1. $\left(x^{2}\right)\left(-3 x^{2} y^{3}\right)$
2. $\left(-9 p r^{4}\right)\left(p^{2} r^{2}\right)$
3. $\left(2 s t^{9}\right)\left(-s t^{2}\right)$
4. $\left(3 e f g^{2}\right)\left(-3 e^{2} f^{2} g\right)$
5. $2 q\left(4 q^{2}-2\right)$
6. $-x\left(x^{2}+2\right)$
7. $5 m\left(-3 m^{2}+2 m\right)$
8. $6 x\left(-x^{5}+2 x^{3}+x\right)$
9. $-4 s t(s t-12 t-2 s)$
10. $-9 a b\left(a^{2}+2 a b-b^{2}\right)$
11. $-7 v^{2} w^{2}\left(v w^{2}+2 v w+1\right)$
12. $8 p^{4}\left(p^{2}-8 p+17\right)$
13. $4 x\left(-x^{2}-2 x y+3\right)$
14. $7 x^{2}\left(3 x^{2} y+7 x^{2}-2 x\right)$
15. $-4 t^{3} r^{2}\left(3 t^{2} r-t^{5} r-6 t^{2} r^{2}\right)$
16. $h^{2} k\left(2 h k^{2}-h k+7 k\right)$
\qquad
17. A triangle has a base of $4 x^{2}$ and a height of $6 x+3$. Write and simplify an expression for the area of the triangle.
\qquad Date \qquad Class \qquad
California Standards Preview of 1 1A10.0

LEsson Practice

12-6 Multiplying Binomials

Multiply.

1. $(z+1)(z+2)$
2. $(1-y)(2-y)$
3. $(2 x+1)(2 x+4)$
4. $(w+1)(w-3)$
5. $(3 v+1)(v-1)$
6. $(t+2)(2 t-2)$
7. $(-3 g+4)(2 g-1)$
8. $(3 c+d)(c-2 d)$
9. $(2 a+b)(a+2 b)$
\qquad
\qquad
\qquad
10. A box is formed from a 1 in . by 18 in . piece of cardboard by cutting a square with side length m inches out of each corner and folding up the sides. Write and simplify an expression for the area of the base of the box.
11. A table is placed in a $14 \mathrm{ft} \times 18 \mathrm{ft}$ room so that there is an equal amount of space of width s feet all the way around the table. Write and simplify an expression for the area of the table.
12. A circular swimming pool with a radius of 14 ft is surrounded by a deck with width y feet. Write and simplify an expression for the total area of the pool and the deck. Use $\frac{22}{7}$ for pi.

Multiply.

13. $(r-2)^{2}$
\qquad
14. $(3 n-3)(3 n+3)$
15. $(2 y+z)^{2}$
16. $(9 p-2)(-2+9 p)$
\qquad
17. $(a+b)(a-b)$
18. $(4 e-f)^{2}$
19. $(p+4)(p-4)$
\qquad
\qquad
20. $(2+q)^{2}$
\qquad
21. $(m-1)^{2}$

[^0]: \qquad

