Holt California Mathematics

Course 1

Homework and Practice Workbook

Copyright © by Holt, Rinehart and Winston

All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher.

Requests for permission to make copies of any part of the work should be mailed to the following address: Permissions Department, Holt, Rinehart and Winston, 10801 N. MoPac Expressway, Building 3, Austin, Texas 78759.

HOLT and the "Owl Design" are trademarks licensed to Holt, Rinehart and Winston, registered in the United States of America and/or other jurisdictions.

Printed in the United States of America

If you have received these materials as examination copies free of charge, Holt, Rinehart and Winston retains title to the materials and they may not be resold. Resale of examination copies is strictly prohibited.

Possession of this publication in print format does not entitle users to convert this publication, or any portion of it, into electronic format.

CONTENTS

Chapter 1 1
Chapter 2 12
Chapter 3 20
Chapter 4 26
Chapter 5 36
Chapter 6 44
Chapter 7 51
Chapter 8 59
Chapter 9 66
Chapter 10 75
Chapter 11 85
 \qquad Date \qquad Class \qquad
California Standards Preparation for AF2.0

$\overbrace{\text { LESSON }}$ Practice
 1-1 Numbers and Patterns

Identify a possible pattern. Use the pattern to write the next three numbers.

1. $41,37,33,29$, \qquad , \qquad , ...
2. $50,52,56,62$, \qquad , \qquad , \quad, \ldots
3. $320,160,80,40$, \qquad , \qquad 4. $24,40,56,72$, \qquad , \qquad , _ , ...
\qquad
\qquad
Identify a possible pattern. Use the pattern to draw the next three figures.
4.

6.

7. Complete the table so that it shows the number of dots in each figure.

Figure	$\mathbf{1}$	2	3
Number of Dots			

How many dots are in the fifth figure of the pattern? \qquad
Use drawings to justify your answer.
\qquad Date \qquad Class \qquad
California Standards Preparation for AF1.3 and AF1.4

Practice
 1-2 Exponents

Find each value.

1. 5^{2}
2. 2^{4}
3. 3^{3}
4. 7^{2}
5. 4^{4}
6. 12^{2}
7. 10^{3}
8. 11^{1}
9. 1^{6}
10. 20^{2}
11. 6^{3}
12. 7^{3}

Write each number using an exponent and the given base.

13. 16, base 4
14. 32, base 2
15. 3,600, base 60
16. 256, base 4
17. 512, base 8
18. 196, base 14
19. Damon has 4 times as many stamps as Julia. Julia has 4 times as many stamps as Claire. Claire has 4 stamps. Write the number of stamps Damon has in both exponential form and standard form.
20. Holly starts a jump rope exercise program. She jumps rope for 3 minutes the first week. In the second week, she triples the time she jumps. In the third week, she triples the time of the second week, and in the fourth week, she triples the time of the third week. How many minutes does she jump rope during the fourth week?
\qquad Date \qquad Class \qquad
California Standards AF1.3, AF1.4

Lesson Practice

1-3 Order of Operations

Simplify each expression.

1. $15 \cdot 3+12 \cdot 2$
2. $212+21 \div 3$
3. $9 \cdot 3-18 \div 3$
\qquad
4. $65-36 \div 3$
5. $100-9^{2}+2$
6. $3 \cdot 5-45 \div 3^{2}$
\qquad
7. $54 \div 6+4 \cdot 6$
8. $(6+5) \cdot 16 \div 2$
9. $60-8 \cdot 12 \div 3$
\qquad
10. $45-3^{2} \cdot 5$
11. $52-(8 \cdot 2 \div 4)+3^{2}$
12. $\left(2^{3}+10 \div 2\right) \cdot 3$
13. $25+7\left(18-4^{2}\right)$
14. $2^{4} \div 8+5$
\qquad
15. $2^{5}-(3 \cdot 7-7)$
16. $96 \div 4+5 \cdot 2^{2}$
\qquad
17. $(6 \cdot 3-12)^{2} \div 9+7$
18. $4^{3}-(3+12 \cdot 2-9)$
\qquad
19. $(1+2)^{2} \cdot(3-1)^{2} \div 2$
20. $(16 \div 4)+4 \cdot\left(2^{2}-2\right)$
\qquad
21. $75+5^{2}-(8-3)$
$21.9 \cdot 6-5(10-3)$
\qquad
22. Jared has $\$ 32$. He buys 5 packs of trading cards that cost $\$ 3$ each and a display book that costs $\$ 7$. Simplify the expression $32-(5 \cdot 3+7)$ to find out how much money Jared has left.
23. David buys 3 movie tickets for $\$ 6$ each and 2 bags of popcorn for $\$ 2$ each. Simplify the expression $3 \cdot 6+2 \cdot 2$ to find out how much money David spent in all.
\qquad Date \qquad Class \qquad
California Standards AF1.3

1 LESSON Practice
 1-4 Properties of Numbers

Tell which property is represented.

1. $12 \cdot 14=14 \cdot 12$
2. $1 \cdot 36=36$
3. $(17+36)+4=17+(36+4)$
4. $8 \cdot 12 \cdot 5=8 \cdot(12 \cdot 5)$

Simplify each expression. Justify each step.
5. $4 \cdot 9 \cdot 50$
$4 \cdot 9 \cdot 50=$ \qquad

$$
\begin{aligned}
& = \\
& = \\
& = \\
&
\end{aligned}
$$

6. $(33+45)+7$
$(33+45)+7=$
\qquad
$=$
$=$ \qquad

Use the Distributive Property to find each product.
7. $3(26)=$
8. $(18) 9=$ \qquad
$=$
$=$
$=$ =
$=$ \qquad $=$ \qquad
\qquad Date \qquad Class \qquad
California Standards AF1.2, AF1.3

LEsSon Practice

1-5 Evaluating Algebraic Expressions

Evaluate $\boldsymbol{n}-5$ for each value of \boldsymbol{n}.

1. $n=8$
2. $n=121$
3. $n=32$
4. $n=59$
\qquad

Evaluate each expression for the given values of the variable.
5. $3 n+15$ for $n=4$
6. $h \div 12$ for $h=60$
7. $32 x-32$ for $x=2$
8. $\frac{c}{2}$ for $c=24$
9. $(n \div 2) 5$ for $n=14$
10. $8 p+148$ for $p=15$
\qquad
\qquad

11. $e^{2}-7$ for $e=8$
12. $3 d^{2}+d$ for $d=5$
13. $40-4 k^{3}$ for $k=2$
\qquad
\qquad
\qquad
14. $2 y-z$ for $y=21$ and $z=19$
15. $3 h^{2}+8 m$ for $h=3$ and $m=2$
\qquad
16. $18 \div a+b \div c$ for $a=6, b=45$ and $c=9$
17. $10 x \div 4 y \times 8 z$ for $x=14, y=5$ and $z=2$
\qquad
18. You can find the area of a rectangle with the expression Iw where / represents the length and w represents the width. What is the area of the rectangle at right in square feet?

19. Rita drove an average of $55 \mathrm{mi} / \mathrm{h}$ on her trip to the mountains.

You can use the expression $55 h$ to find out how many miles she drove in h hours. If she drove for 5 hours, how many miles did she drive?
\qquad Date \qquad Class \qquad
California Standards AF1.2

Practice
 1-6 Writing Algebraic Expressions
 Write each phrase as an algebraic expression.

1. 125 decreased by a number
2. the product of a number and 35
3. twice a number, plus 27
4. the product of e and 4 , divided by 12
5. 359 more than z
6. the quotient of 100 and w
7. 12 less than 15 times x
8. y less than 18 times 6
9. 48 more than the quotient of a number and 64 \qquad
10. 500 less than the product of 4 and a number \qquad
11. the quotient of p and 4 , decreased by 320 \qquad
12. 13 multiplied by the amount 60 minus w \qquad
13. the quotient of 45 and the sum of c and 17 \qquad
14. twice the sum of a number and 600 \qquad
15. There are twice as many flute players as there are trumpet players in the band. If there are n flute players, write an algebraic expression to find out how many trumpet players there are.
16. The Nile River is the longest river in the world at 4,160 miles. A group of explorers traveled along the entire Nile in x days. They traveled the same distance each day. Write an algebraic expression to find each day's distance.
17. A slice of pizza has 290 calories, and a stalk of celery has 5 calories. Write an algebraic expression to find out how many calories there are in a slices of pizza and b stalks of celery.
18. At Grant Cinemas, adult tickets cost $\$ 8.50$ and children's tickets cost $\$ 5.50$. Write an algebraic expression for the cost of a adult tickets and c children's tickets.
\qquad Date \qquad Class \qquad
California Standards Preparation for AF1.1

Lesson Practice

1-7 Equations and Their Solutions

Determine whether the given value of the variable is a solution.

$$
\text { 1. } 9+x=21 \text { for } x=11
$$

2. $n-12=5$ for $n=17$ \qquad
3. $25 \cdot r=75$ for $r=3$ \qquad 4. $72 \div q=8$ for $q=9$ \qquad
4. $28+c=43$ for $c=15$ \qquad 6. $u \div 11=10$ for $u=111$ \qquad
5. $\frac{k}{8}=4$ for $k=24$ \qquad 8. $16 x=48$ for $x=3$ \qquad
6. $73-f=29$ for $f=54$ \qquad 10. $67-j=25$ for $j=42$ \qquad
7. $39 \div v=13$ for $v=3$ \qquad 12. $88+d=100$ for $d=2$ \qquad
8. $14 p=20$ for $p=5$ \qquad 14. $6 w=30$ for $w=5$ \qquad
9. $7+x=70$ for $x=10$ \qquad 16. $6 \cdot n=174$ for $n=29$ \qquad

Replace each ? with a number that makes the equation correct.
17. $5+1=2+?$
19. ? $3=2 \cdot 9$ \qquad
21. ? $+8=6+3$ \qquad
23. Carla had $\$ 15$. After she bought lunch, she had $\$ 8$ left. Write an equation using the variable x to model this situation. What does your variable represent?
18. $10-?=12-7$ \qquad
20. $28 \div 4=14 \div ?$
22. $12 \cdot 0=? \cdot 15$ \qquad
24. Seventy-two people signed up for the soccer league. After the players were evenly divided into teams, there were 6 teams in the league. Write an equation to model this situation using the variable x.
\qquad Date \qquad Class \qquad
California Standards \& AF1. 1

$1-8$ Solving Equations by Subtracting

Solve each equation. Check your answers.

1. $s+3=23$
2. $q+9=16$
3. $38+x=44$
\qquad
4. $t+31=50$
\qquad
5. $19+v=24$

Solve each equation.

10. $m+8=17$
11. $r+14=20$
12. $25+x=32$
13. $47+p=55$
14. $19+d=27$
15. $13+n=26$
16. $q+12=19$
17. $34+f=43$
18. $52+w=68$
19. Kenya bought 28 beads, and Nancy bought 25 beads. It takes 35 beads to make a necklace. Write and solve two addition equations to find how many more beads they each need to make a necklace.
\qquad
\qquad
\qquad
\qquad
20. During a sales trip, Mr. Jones drove 15 miles east from Brownsville to Carlton. Then he drove several more miles east from Carlton to Sun City. The distance from Brownsville to Sun City is 35 miles. Write and solve an addition equation to find how many miles it is from Carlton to Sun City.
\qquad
\qquad
\qquad
\qquad Date \qquad Class \qquad
California Standards A-AF1.1

1-9 Solving Equations by Adding

Solve each equation. Check your answers.

1. $s-8=12$
2. $9=q-5$
3. $34=x-12$
\qquad
4. $t-19=9$
\qquad
5. $15=v-68$
\qquad

Solve each equation.

10. $7=m-5$
11. $r-10=22$
12. $16=x-4$
13. $40=p-11$
14. $28=d-6$
15. $n-9=42$
16. $q-85=8$
17. $f-13=18$
18. $47=w-38$
19. Ted took 17 pictures at the aquarium. He now has 7 pictures left on the roll. Write and solve a subtraction equation to find out how many photos Ted had when he went to the aquarium.
20. Ted bought a dolphin poster for $\$ 12$. He now has $\$ 5$. Write and solve a subtraction equation to find out how much money Ted took to the aquarium.
\qquad Date \qquad Class \qquad
California Standards AF1. 1

Solve each equation. Check your answers.

1. $8 s=72$
2. $27=9 q$
\qquad
3. $48=6 x$
4. $10 t=130$
\qquad
5. $84=6 v$

Solve each equation.
10. $49=7 m$
\qquad
13. $36=4 p$
\qquad
16. $12 q=144$
11. $20 r=80$
14. $147=7 d$
17. $25 f=125$
\qquad
12. $64=8 x$
\qquad
15. $11 n=110$
18. $128=16 w$
19. A hot-air balloon flew at 10 miles per hour. Using the variable h, write and solve a multiplication equation to find how many hours the balloon traveled if it covered a distance of 70 miles.
20. A passenger helicopter can travel 300 miles in the same time it takes a hot-air balloon to travel 20 miles. Using the variable s, write and solve a multiplication equation to find how many times faster the helicopter can travel than the hot air balloon.
\qquad
\qquad Class \qquad

Solve each equation. Check your answers.

1. $\frac{s}{6}=7$
2. $\frac{v}{5}=9$
3. $12=\frac{q}{7}$
4. $\frac{m}{2}=16$
5. $26=\frac{x}{3}$
6. $\frac{n}{8}=4$
7. $\frac{t}{11}=11$
8. $\frac{p}{7}=10$
9. $7=\frac{v}{8}$

Solve each equation.
10. $10=\frac{m}{9}$
11. $\frac{r}{5}=8$
12. $11=\frac{x}{7}$
13. $9=\frac{p}{12}$
14. $15=\frac{d}{5}$
15. $\frac{n}{4}=28$
16. $\frac{q}{2}=134$
17. $\frac{u}{16}=1$
18. $2=\frac{w}{25}$
19. All the seats in the theater are divided into 6 groups. There are 35 seats in each group. Using the variable s, write and solve a division equation to find how many seats there are in the theater.
20. There are 16 ounces in one pound. A box of nails weighs 4 pounds. Using the variable w, write and solve a division equation to find how many ounces the box weighs.
\qquad Date \qquad Class \qquad
California Standards Preparation for NS1.1

${ }^{\text {LEsson }}$ Practice
 2-1 Introduction to Integers

Graph each integer and its opposite on a number line.

1. 8
2. -7

Compare the integers. Use $<$ or $>$.
3. -15 \square -7
4. $8 \square-8$
5. -14 \square 13
6. $-18 \square-20$

Use a number line to order the integers from least to greatest.
7. $-1 ; 4 ;-5 ; 7 ;-3$

\qquad
9. $6 ; 5 ;-7 ;-8 ;-2$

8. $-6 ; 8 ; 0 ; 4 ;-2$

10. $1 ; 3 ;-4 ;-5 ; 7$

Use a number line to find each absolute value.
11. $|-18|$
12. $|11|$
13. $|-25|$ \qquad
14. | 19 | \qquad
15. $|-10|$
16. $|16|$
17. | 22 | \qquad
18. $|-14|$ \qquad
19. |9| \qquad 20. $|-24|$
21. $|-7|$ \qquad
22. | 17 | \qquad
23. Christy dove to a depth of 12 feet below the surface of the water.

Write the depth as an integer.
24. The highest point in North Carolina is Mt. Mitchell, with a height of 6,684 feet. Write the height of Mt. Mitchell as an integer.
\qquad Date \qquad Class \qquad
California Standards NS2.3, AF1.2
Lesson Practice

2-2 Adding Integers

Use a number line to find each sum.

1. $-1+5$
2. $4+(-6)$

Find each sum.
3. $-51+(-9)$
4. $27+(-6)$
5. $1+(-30)$
6. $15+(-25)$
7. $50+(-7)$
8. $-19+(-15)$
9. $(-23)+9$
10. $-19+(-21)$
11. $-17+11$
12. $20+(-8)$
13. $(-15)+(-7)$
14. $12+(-14)$

Evaluate $e+f$ for the given values.
15. $e=9, f=-24$
16. $e=-17, f=-7$
17. $e=32, f=-19$
18. $e=-15, f=-15$
19. $e=-20, f=20$
20. $e=-30, f=12$
21. The temperature rose $9^{\circ} \mathrm{F}$ in 3 hours. If the starting temperature was $-5^{\circ} \mathrm{F}$, what was the final temperature?
\qquad
22. Matt is playing a game. He gains 7 points, loses 10 points, gains 2 points, and then loses 8 points. What is his final score?
\qquad Date \qquad Class \qquad California Standards NS2.3, AF1. 2

Lesson Practice

2-3 Subtracting Integers

Use a number line to find each difference.

1. $-2-3$

2. $5-(-1)$

Find each difference.
3. $-6-4$
4. $-7-(-12)$
5. $12-16$
6. $5-(-19)$
7. $-18-(-18)$
8. $23-(-23)$
9. $-10-(-9)$
10. $29-(-13)$
11. $9-15$
12. $-12-14$
13. $22-(-8)$
14. $-16-(-11)$

Evaluate $x-y$ for each set of values.
15. $x=14, y=-2$
16. $x=-11, y=11$
17. $x=-8, y=-15$
18. $x=-9, y=-9$
19. $x=19, y=-20$
20. $x=20, y=25$
\qquad
\qquad
21. The high temperature one day was $-1^{\circ} \mathrm{F}$. The low temperature was -5° F.What was the difference between the high and low temperatures for the day?
\qquad
22. The temperature changed from $5^{\circ} \mathrm{F}$ at 6 P.M. to $-2^{\circ} \mathrm{F}$ at midnight. How much did the temperature decrease?
\qquad
\qquad Date \qquad Class \qquad
California Standards NS2.3, AF1.4

Lesson Practice
 2-4 Multiplying and Dividing Integers

Find each product.

1. $8 \cdot(-5)$
2. $-4 \cdot 7$
3. $-6 \cdot(-3)$
4. $-2 \cdot 4$
5. $4 \cdot(-9)$
6. $-9 \cdot 5$
7. $6 \cdot 8$
8. $-7 \cdot(-3)$

Multiply.

9. $-6 \cdot(-6)$
10. $9 \cdot(-3)$
11. $-2 \cdot(-8)$
12. $5 \cdot(-7)$
13. $10 \cdot 8$
14. $-5 \cdot 9$
15. $9 \cdot(-6)$
16. $(-4) \cdot(-11)$

Find each quotient.
17. $25 \div(-5)$
18. $-54 \div(-6)$
19. $-10 \div 5$
20. $-28 \div(-4)$
21. $-42 \div(-7)$
22. $-21 \div 3$
23. $36 \div(-6)$
24. $-81 \div(-9)$
25. $-32 \div 8$
26. $45 \div(-9)$
29. $-42 \div 6$
30. $-72 \div(-9)$
31. $40 \div 8$
32. $56 \div(-7)$
33. Kim was walking down a rocky path. For 4 minutes, the elevation dropped steadily. Altogether it dropped 8 feet. What was the change in elevation per minute for the 4 minutes?
34. As a front passed, the temperature changed steadily over 6 hours. Altogether it changed -18 degrees. What was the change in temperature per hour for the 6 hours?
\qquad Date \qquad Class \qquad
California Standards 4 NS2.3, AF1.1

Practice

2-5 Solving Equations Containing Integers

Solve. Check each answer.

1. $y-5=-4$
2. $n-9=-14$
3. $13=x-15$
4. $p+18=14$
5. $q+6=-2$
6. $0=w+4$
7. $9 h=-36$
8. $-3 b=36$
9. $-100=-4 u$
10. $\frac{d}{5}=-7$
11. $\frac{c}{4}=-20$
12. $\frac{s}{-9}=9$
13. $f+15=-16$
14. $-75=3 v$
15. $g-19=-21$
16. $-63=-9 s$
17. $14+m=-10$
18. $12=\frac{W}{4}$
19. $x=15-31$
20. $\frac{e}{-7}=8$
21. $-6=21-n$
22. The temperature in Buffalo, New York, was -2° F one day. This was 42 degrees warmer than the temperature in Nome, Alaska, on the same day. What was the temperature in Nome?
23. LaSanda bought 20 shares of stock for $\$ 175$. She sold the stock for a total profit of $\$ 25$. What was the selling price of each share of stock?
\qquad Date \qquad Class \qquad
California Standards Preparation for AF1.0

Lesson Practice

2-6 The Coordinate Plane

Use the coordinate plane for Exercises 1-12.
Name the quadrant where each point is located.

1. D \qquad 2. P \qquad
2. Y \qquad
3. B \qquad
4. C \qquad
5. X \qquad

Give the coordinates of each point.
7. X \qquad 8. A
\qquad
9. P \qquad 10. Q \qquad

11. Y \qquad 12. D \qquad

Graph each point on the coordinate plane at right.
13. $X(3,1)$
14. $T(-2,-2)$
15. $C(1,-2)$
16. $U(0,-3)$
17. $P(2,0)$
18. $A(-4,-1)$
19. Does every point lie in a quadrant? Explain.

\qquad
\qquad
20. When a point lies on the x-axis, what do you know about its y-coordinate? When a point lies on the y-axis, what do you know about its x-coordinate?
\qquad Date \qquad Class \qquad
California Standards Preparation for AF1.0

Lesson Practice

2-7 Equations in Two Variables

Write an equation in two variables that gives the values in each table. Use the equation to find the value of y for the indicated value of \boldsymbol{x}.
1.

\boldsymbol{x}	1	2	3	4	5
\boldsymbol{y}	7	14	21	28	

\qquad
\qquad
2.

\boldsymbol{x}	2	3	4	5	6
\boldsymbol{y}	-3	-2	-1	0	

3.

\boldsymbol{x}	20	16	12	8	4
\boldsymbol{y}	10	8	6	4	\bullet

4.

\boldsymbol{x}	7	8	9	10	11
\boldsymbol{y}	11	12	13	14	

Write an equation for the relationship. Tell what each variable you use represents.
5. Amanda is 7 years younger than her cousin.
6. The population of North Carolina is twice as large as the population of South Carolina.
\qquad
\qquad
7. An Internet book company charges $\$ 7$ for each paperback book, plus $\$ 2.75$ for shipping and handling per order.
\qquad
\qquad
8. Henry records how many days he rides his bike and how far he rides each week. He rides the same distance each time. He rode 18 miles in 3 days, 24 miles in 4 days, and 42 miles in 7 days.
Write an equation in two variables for the relationship.
\qquad Date \qquad Class \qquad
California Standards NS2.3, AF1.0

Practice

Less

Use the given x-values to write solutions of each equation as ordered pairs.

1. $y=5 x+3$ for $x=1,2,3$
2. $y=-4 x$ for $x=3,5,7$

Determine whether each ordered pair is a solution of the given equation.
3. $(6,4) ; y=2 x-8$ \qquad 4. $(8,72) ; y=x \div 9$ \qquad
5. $(-3,-18) ; y=-6 x$ \qquad 6. $(5,64) ; y=12 x+4$ \qquad

Use the graph of the linear equation to find the value of y for each given value of \boldsymbol{x}.
7. $x=2$
8. $x=1$
9. $x=0$
\qquad

Graph each equation.

12. $y=x+1$

13. $y=3-x$

\qquad Date \qquad Class \qquad California Standards Preparation for NS2.4
(ax $\frac{\text { LESSON }}{3-1}$ Practice

Tell whether each number is prime or composite.

1. 33
2. 41
3. 52
4. 79
5. 96
6. 121
7. 83
8. 119

Write the prime factorization of each number.
9. 57
10. 49
11. 88
12. 95
13. 105
14. 98
15. 52
16. 42
17. 68
18. 91
19. 60
20. 72
21.56
22. 144
\qquad
25. 124
26. 515
27. 725
\qquad
31. 1,040
30. 1,000
29. 450
\qquad
33. The prime factorization of a number is $3^{2} \cdot 5 \cdot 11$. What is the number?
24. 168
28. 220
32. 2,500

Name \qquad Date \qquad Class \qquad
California Standards NS2.4
Practice
3-2 Greatest Common Divisor
Find the greatest common divisor (GCD).

1. 12,15
2. 22,33
3. 63,45
4. 15,50
5. 18,81
6. 18,48
7. 20, 24
8. $14,42,49$
9. 3, 6, 9
10. $16,24,30$
11. $16,40,88$
12. 42,70
13. $25,125,200$
14. $26,39,52$
15. 36,100
16. 35,77
17. 56,84
18. $14,49,56,84$
19. $30,75,60,90$
20. 12, 38, 40, 94
21. $48,66,96,102$
22. Volunteers are preparing identical backpacks for refugees. There are 32 maps and 24 dictionaries to use for the backpacks. What is the greatest number of backpacks they can prepare using all of the maps and dictionaries?
23. Alyssa is preparing identical fruit baskets. There are 36 oranges and 60 apples to use for the baskets. What is the greatest number of fruit baskets she can prepare using all of the oranges and apples?
\qquad Date \qquad Class \qquad California Standards $2-$ NS2.4

Lesson Practice

3-3 Least Common Multiple

Find the least common multiple (LCM).

1. 8,10
2. 10,15
3. 6,9
\qquad
4. 12,16
\qquad
5. 15,45
6. 7, 28
7. 4,14
\qquad
8. $3,10,12$
9. $7,14,49$
10. $5,9,18$
11. $4,12,24,36$
12. 18,30
13. 5,11
\qquad
14. $9,36,60$
15. 5,15
16. $5,25,30$
17. $4,9,12,18$
18. $5,9,15,18$
19. Jasmine is helping her father plant trees to create a border around the back yard. Jasmine plants a tree every 25 minutes, and her father plants a tree every 15 minutes. If they started together, how long before they would finish planting a tree at the same time?
20. Two dancers are rehearsing in a studio. One dancer's routine lasts 12 minutes. The other dancer's routine lasts 15 minutes. If they start together and take no breaks between their routines, how long before they start together again?
21. Evan and Renzo are swimming laps in the pool. It takes Evan 8 minutes to complete 1 lap and Renzo 6 minutes to complete 1 lap. They start together at the tops of their lanes. In how many minutes will they be together again at the tops of their lanes?
\qquad Date \qquad Class \qquad
California Standards 4 NS1.1, 4 NS2.4

Practice

Lesson
 3-4 Equivalent Fractions and Mixed Numbers

Find a fraction equivalent to the given fraction.

1. $\frac{2}{9}$
2. $\frac{8}{15}$
3. $\frac{7}{8}$ \qquad
4. $\frac{16}{24}$
5. $\frac{12}{20}$
6. $\frac{9}{12}$ \qquad

Write the fractions with a common denominator.
Then determine if they are equivalent.
7. $\frac{8}{10}$ and $\frac{12}{15}$
8. $\frac{6}{8}$ and $\frac{8}{12}$
9. $\frac{3}{9}$ and $\frac{4}{8}$
10. $\frac{7}{4}$ and $\frac{9}{5}$
11. $\frac{15}{12}$ and $\frac{20}{16}$
12. $\frac{15}{9}$ and $\frac{30}{18}$

Write each as a mixed number.
13. $\frac{21}{8}$
14. $\frac{37}{4}$ \qquad 15. $\frac{16}{5}$
16. $\frac{49}{9}$

Write each as an improper fraction.
17. $8 \frac{2}{3}$ \qquad 18. $1 \frac{7}{12}$ \qquad 19. $25 \frac{3}{4}$
20. $7 \frac{5}{6}$
21. Maria's desk is $33 \frac{3}{4}$ inches long. Write this number as an improper fraction.
22. Leon walked $\frac{5}{8}$ mile. Liz walked $\frac{10}{16}$ mile. Did they walk the same distance?
\qquad
\qquad Date \qquad Class \qquad
California Standards Preparation for - NS1.1, - NS2.4

Practice

3-5 Equivalent Fractions and Decimals

Write each fraction as a decimal. Round to the nearest
hundredth, if necessary.

1. $\frac{2}{10}$
2. $\frac{19}{20}$
3. $\frac{5}{8}$
4. $\frac{11}{5}$ \qquad
5. $\frac{19}{6}$ \qquad
6. $\frac{17}{4}$ \qquad
7. $\frac{13}{12}$ \qquad
8. $\frac{30}{7}$
\qquad
9. $\frac{7}{4}$ \qquad
10. $\frac{9}{20}$ \qquad 11. $\frac{11}{10}$
11. $\frac{2}{25}$ \qquad

Write each decimal as a fraction in simplest form.
13. 0.85
14. 0.11
15. -0.25
16. 4.3
17. 7.75
18. 5.03
19. -1.06
20. 0.375
21. -2.65
22. -5.6
23. 1.12
24. 0.005

Write each answer as a decimal rounded to the nearest thousandth.
25. In the 1998 Winter Olympics, a total of 205 medals were awarded. The United States won 13 medals. What portion of the medals did the United States win?
26. On a test, Hailey answered 64 out of 75 questions correctly.

What portion of her answers was correct?
\qquad Date \qquad Class \qquad
California Standards n NS2.1, NS2.4

Practice

$\begin{array}{ll}\text { LEsson } & \text { Comparing and Ordering Rational Numbers }\end{array}$

Compare the fractions. Write $<$ or $>$. Justify your answer.

1. $-\frac{7}{8} \square-\frac{5}{8}$
2. $\frac{3}{10} \square \frac{3}{8}$
3. $5 \frac{7}{12} \square 5 \frac{5}{12}$

Compare the decimals. Write < or >. Justify your answer.
4. -0.531 \square -0.513
5. $0.73 \square 0.073$
6. $3 . \overline{59}$ \square 3.599

Order the numbers from least to greatest.
7. $\frac{4}{9}, 0.4,0.45$
8. $1.7,1.65,1 \frac{2}{3}$
9. $3.18,3 \frac{1}{8}, 3.80$
10. $-5,-5.25,-5 \frac{2}{5}$
11. $-6 \frac{3}{4}, 6.34,-6.4$
12. $\frac{11}{12}, \frac{8}{9}, 0.91$
13. $-\frac{3}{5},-\frac{5}{7},-0.65$
14. $0.3,0.345, \frac{1}{3}$
15. $-0.75, \frac{7}{8},-\frac{5}{8}$
16. A ream of paper contains 500 sheets of paper. Norm has 373 sheets of paper left from a ream. Express the portion of a ream Norm has as a fraction and as a decimal.
17. The density of Venus, compared to Earth having a density of 1 , is 0.943 . The density of Mercury is 0.983 , compared to the density of Earth. Which planet has a greater density, Venus or Mercury?
\qquad Date \qquad Class \qquad
California Standards Preparation for NS2.1

Lesson Practice

4-1 Estimating with Fractions

Estimate each sum or difference.

1. $\frac{5}{11}+\frac{4}{9}$
2. $\frac{6}{13}+\frac{8}{9}$
3. $\frac{9}{10}-\frac{4}{9}$
4. $1 \frac{5}{8}-\frac{4}{7}$
5. $3 \frac{7}{8}-\frac{2}{5}$
6. $\frac{8}{9}-\frac{1}{12}$
7. $4 \frac{5}{16}+2 \frac{9}{10}$
8. $11 \frac{3}{7}-5 \frac{5}{6}$
9. $7 \frac{1}{16}-\frac{11}{12}$

Estimate each product or quotient.

10. $12 \frac{2}{5} \div 5 \frac{3}{4}$
11. $7 \frac{7}{8} \cdot 4 \frac{3}{5}$
12. $5 \frac{1}{6} \cdot 3 \frac{2}{9}$
13. $23 \frac{7}{10} \div 4 \frac{2}{5}$
14. $17 \frac{11}{12} \div 8 \frac{5}{9}$
15. $8 \frac{7}{12} \cdot 6 \frac{9}{10}$
16. $12 \frac{3}{8} \cdot 6 \frac{1}{6}$
17. $35 \frac{2}{3} \div 3 \frac{5}{7}$
18. $16 \frac{5}{8} \cdot 2 \frac{1}{5}$
19. A hallway has a length of $15 \frac{3}{4}$ feet and a length of $4 \frac{1}{12}$ feet.

Estimate the area of the hallway in square feet.
20. A 6 -week old puppy weighed $8 \frac{7}{16}$ pounds. At 12 weeks of age, the same puppy weighed about $17 \frac{3}{8}$ pounds. Estimate how much weight the puppy gained between the ages of 6 weeks and 12 weeks.
\qquad Date \qquad Class \qquad
California Standards NS2.1, NS2.4
Practice

4-2 Adding and Subtracting Fractions

Add or subtract. Write each answer in simplest form.

1. $\frac{1}{5}+\frac{2}{5}$
2. $\frac{4}{15}+\frac{8}{15}$
3. $\frac{7}{12}-\frac{5}{12}$
4. $\frac{9}{10}-\frac{7}{10}$
5. $\frac{11}{12}-\frac{7}{12}$
6. $\frac{2}{7}+\frac{6}{7}$
7. $\frac{11}{15}+\frac{7}{15}$
8. $\frac{3}{16}-\frac{1}{16}$
9. $\frac{8}{21}+\frac{5}{21}$
10. $\frac{4}{5}-\frac{3}{4}$
11. $\frac{3}{8}+\frac{1}{2}$
12. $\frac{21}{25}-\frac{2}{5}$
13. $\frac{11}{12}+\frac{5}{6}$
14. $\frac{7}{8}-\frac{5}{12}$
15. $\frac{9}{10}+\frac{5}{6}$
16. $\frac{7}{8}-\frac{2}{5}$
17. $\frac{5}{6}+\frac{11}{15}$
18. $\frac{3}{4}-\frac{8}{15}$
19. The school track is $\frac{7}{8}$ mile in length. Sherri ran $\frac{2}{3}$ mile. How much farther does she have to go to get all the way around the track?
20. The Millers budget $\frac{1}{2}$ of their income for fixed expenses and $\frac{1}{8}$ of their income for savings. What fraction of their income is left?
\qquad Date \qquad Class \qquad

Practice

4-3 Adding and Subtracting Mixed Numbers

Add. Write each answer in simplest form.

1. $7 \frac{2}{7}+6 \frac{5}{7}$
2. $5 \frac{4}{9}+3 \frac{7}{9}$
3. $4 \frac{1}{3}+8 \frac{1}{4}$
4. $2 \frac{7}{15}+3 \frac{11}{15}$
5. $6 \frac{9}{10}+1 \frac{2}{5}$
6. $2 \frac{3}{5}+1 \frac{11}{20}$
7. $5 \frac{9}{10}+2 \frac{5}{8}$
8. $2 \frac{11}{12}+3 \frac{7}{8}$
9. $1 \frac{2}{3}+5 \frac{7}{9}$

Subtract. Write each answer in simplest form.
10. $7 \frac{7}{9}-3 \frac{5}{9}$
11. $9 \frac{7}{10}-5 \frac{3}{10}$
12. $4 \frac{13}{15}-1 \frac{7}{15}$
13. $6 \frac{2}{3}-3 \frac{3}{5}$
14. $10 \frac{3}{4}-6 \frac{1}{3}$
15. $2 \frac{3}{10}-1 \frac{7}{8}$
16. $8 \frac{7}{12}-6 \frac{1}{3}$
17. $5 \frac{7}{8}-3 \frac{9}{10}$
18. $7 \frac{6}{7}-6 \frac{3}{4}$
19. Tucker ran $5 \frac{3}{8}$ miles on Monday and $3 \frac{3}{4}$ miles on Tuesday.

How far did he run on both days?
\qquad Date \qquad Class \qquad
California Standards NS2.1, NS2.2, - NS2. 4
Practice

4-4 Multiplying Fractions and Mixed Numbers

Multiply. Write each answer in simplest form.

1. $5 \cdot \frac{1}{2}$
2. $9 \cdot \frac{3}{4}$
3. $6 \cdot \frac{2}{5}$
4. $\frac{9}{15} \cdot \frac{5}{7}$
5. $\frac{9}{14} \cdot \frac{7}{9}$
6. $\frac{7}{12} \cdot \frac{6}{14}$
7. $12 \cdot \frac{3}{7}$
8. $15 \cdot \frac{5}{6}$
9. $21 \cdot \frac{3}{8}$
10. $2 \frac{1}{3} \cdot \frac{3}{5}$
11. $3 \frac{2}{5} \cdot \frac{1}{2}$
12. $4 \frac{5}{6} \cdot \frac{2}{5}$
13. $2 \frac{2}{5} \cdot \frac{2}{3}$
14. $3 \frac{3}{4} \cdot \frac{2}{5}$
15. $8 \frac{1}{6} \cdot \frac{3}{7}$
16. $2 \frac{1}{3} \cdot 3 \frac{3}{8}$
17. $1 \frac{3}{5} \cdot 6 \frac{2}{3}$
18. $2 \frac{2}{5} \cdot 4 \frac{5}{6}$
19. Rolf spent 15 hours last week practicing his saxophone. If $\frac{3}{10}$ of the time was spent practicing warm-up routines, how much time did he spend practicing warm-up routines?
20. A muffin recipe calls for $\frac{2}{5}$ tablespoon of vanilla extract for 6 muffins. Arthur is making 18 muffins. How much vanilla extract does he need?
\qquad
\qquad Date \qquad Class \qquad

California Standards NS2.1, NS2.2, - NS2. 4

Practice

4-5 Dividing Fractions and Mixed Numbers

Divide. Write each answer in simplest form.

1. $4 \div \frac{1}{2}$
2. $\frac{1}{5} \div \frac{1}{4}$
3. $\frac{1}{3} \div \frac{3}{5}$
4. $\frac{8}{9} \div \frac{2}{3}$
5. $\frac{3}{8} \div \frac{3}{4}$
6. $\frac{7}{10} \div \frac{3}{5}$
7. $\frac{5}{12} \div \frac{2}{5}$
8. $\frac{3}{4} \div \frac{4}{9}$
9. $\frac{7}{12} \div \frac{3}{4}$
10. $4 \frac{1}{6} \div \frac{1}{3}$
11. $3 \frac{1}{4} \div \frac{2}{5}$
12. $6 \frac{1}{9} \div \frac{1}{6}$
13. $2 \frac{1}{4} \div 1 \frac{3}{4}$
14. $3 \frac{3}{4} \div 2 \frac{5}{6}$
15. $5 \frac{1}{3} \div 1 \frac{4}{5}$
16. $2 \frac{1}{2} \div 2 \frac{1}{3}$
17. $1 \frac{3}{4} \div 1 \frac{1}{4}$
18. $7 \frac{2}{3} \div 1 \frac{1}{5}$
19. Burger Barn has $46 \frac{2}{3}$ pounds of ground beef. How many $\frac{1}{3}$-pound burgers can be made using all the ground beef?
20. Roberto needs some roofing tiles to be cut from a large tile. How many tiles that are each $14 \frac{3}{8}$ inches in length can he cut from a larger piece of tile that is $100 \frac{5}{8}$ inches long?
\qquad Date \qquad Class \qquad
California Standards NS2.1, NS2.2, $-\mathrm{NS} 2.4,-\mathrm{AF} 1.1$
Practice

4-6 Solving Equations Containing Fractions

Solve. Write each answer in simplest form.

1. $t-\frac{3}{7}=\frac{4}{7}$
2. $g-\frac{5}{16}=\frac{3}{16}$
3. $k-\frac{3}{10}=\frac{2}{5}$
4. $n+\frac{1}{7}=\frac{2}{3}$
5. $j+\frac{5}{6}=\frac{17}{18}$
6. $f+\frac{5}{12}=\frac{3}{4}$
7. $\frac{1}{4} s=\frac{3}{4}$
8. $\frac{1}{5} a=\frac{1}{2}$
9. $\frac{4}{5} h=\frac{8}{9}$
10. $p-\frac{2}{3}=\frac{5}{8}$
11. $d-\frac{3}{5}=\frac{7}{10}$
12. $y-\frac{2}{7}=3 \frac{1}{4}$
13. $c+\frac{5}{12}=2 \frac{1}{6}$
14. $w+\frac{4}{15}=3 \frac{1}{3}$
15. $z+\frac{6}{7}=2 \frac{3}{5}$
16. $\frac{5}{6} m=\frac{8}{9}$
17. $\frac{1}{2} x=3 \frac{7}{15}$
18. $\frac{1}{5} r=2 \frac{2}{3}$
\qquad
\qquad
\qquad
19. Sarabeth ran $1 \frac{2}{5}$ miles on a path around the park. This was $\frac{5}{8}$ of the distance around the park. What is the distance around the park?
20. An interior decorator bought $12 \frac{1}{2}$ yards of material to make drapes. He used $8 \frac{2}{3}$ yards on 1 pair of drapes. How much material does he have left?
\qquad Date \qquad Class \qquad
California Standards Extension of © NS2.3
Lesson Practice
4-7 Adding, Subtracting and Multiplying Decimals
Add or subtract. Estimate to check whether each answer is reasonable.
21. $6.14+8.91$
22. $4.51+13.08$
23. $12.54+21.08$
24. $34.22+(-18.5)$
25. $10.10+5.9$
26. $6.87+31.6$
27. $9+5.68$
28. $15.51-8.55$
29. $36.36+54.54$
30. $6.23-3.62$
31. $23.57-6.84$
32. $16.61-7.56$
33. $32.08-12.37$

Multiply. Estimate to check whether each answer is reasonable.
16. $2.8 \cdot 8.2$
17. $7 \cdot 6.42$
18. $1.9 \cdot 7.22$
19. $5.3 \cdot 8.4$
20. $7.16 \cdot 0.03$
21. $1.56 \cdot 7.8$
22. $4.6 \cdot 3.1$
23. $0.62 \cdot 1.45$
24. $5.74 \cdot 1.9$
25. Jordan jogged 4.8 miles each day for 21 days last month. How many miles did she jog last month?
\qquad Date \qquad Class \qquad
California Standards Extension of \sim NS2.3

${ }^{\text {Lessom }}$ Practice
 4:8 Dividing Decimals

Divide.

1. $6 \div 0.25$
2. $78.74 \div 12.7$
3. $734.8 \div-1.67$
4. $56.525 \div 0.85$
5. $44.22 \div(-6.7)$
6. $-6.46 \div 0.04$

Divide. Estimate to check whether your answer is reasonable.
7. $63 \div(-4.5)$
8. $8 \div 3.2$
9. $87 \div 7.25$
10. $-36 \div 1.6$
$11.42 \div 4.8$
12. $90 \div 0.36$
13. Freddie used 6.75 gallons of gas to drive 155.25 miles. What was his car's gas mileage?
14. The members of a book club met at a restaurant for dinner. The total bill was $\$ 112.95$ and they shared the bill equally. Each person paid \$12.55. How many members are there in the book club? \qquad
\qquad Date \qquad Class \qquad
California Standards AF2.1

Practice

4-9 Metric Measurements
Choose the most appropriate metric unit for each measurement. Justify your answer.

1. The capacity of a paper cup
\qquad
\qquad
\qquad
\qquad
2. The width of a computer screen
\qquad
\qquad
\qquad
\qquad
Convert each measure.
3. The mass of a small poodle.
\qquad
\qquad
\qquad
\qquad
4. The mass of a pencil
\qquad
\qquad
\qquad
\qquad
5. 496 mm to centimeters
\qquad
6. 832 mg to grams
\qquad
7. 0.041 kL to liters
8. 14.9 g to milligrams
9. $7,800 \mathrm{~cm}$ to meters
10. Sam's laptop computer has a mass of 4.2 kg . Fred's laptop computer has a mass of 4,940 grams. Which computer has the lesser mass? Explain your answer.
11. Elise makes a poster that is 1.5 m tall. Meg makes a poster that is 96 cm tall. Who makes a taller poster? Explain your answer.
\qquad Date \qquad Class \qquad
California Standards AF1.1

Practice

LEEs50N Solving Equations Containing Decimals
Solve.

1. $t+0.77=9.3$
2. $p-1.34=-11.8$
3. $r+2.14=7.8$
4. $3.65+e=-1.4$
5. $w-16.7=8.27$
6. $z-17.2=7.13$
7. $p-67.5=24.81$
\qquad
8. $x-0.45=5.97$
\qquad
9. $4.3 p=28.81$
\qquad
10. $18.36=2.7 y$
11. $99.96=6.8 x$
12. $293.92=17.6 c$
13. $7.7 j=76.23$
14. $3.8 g=-104.12$
\qquad
15. $y-6.32=0.73$
16. $1.08+n=15.72$
17. $k+89.2=-47.62$
18. $h+26.9=12.74$
\qquad
. $2.32=0.73$
19. $\frac{e}{7.4}=6.9$
\qquad
20. $\frac{w}{-0.2}=15.4$
\qquad Date \qquad Class \qquad
California Standards \& NS1.2

The annual dog show has 22 collies, 28 boxers, and 18 poodles. Write each ratio in all three forms.

1. collies to poodles
2. poodles to boxers
\qquad
The Franklin School District has 15 art teachers, 27 math teachers, and 18 Spanish teachers. Write the given ratio in all three forms.
3. art teachers to math teachers
4. Spanish teachers to all teachers
5. Thirty-two students are asked whether the school day should be longer. Twenty-four vote "no" and 8 vote "yes." Write the ratio of "no" votes to "yes" votes in simplest form.
6. Tell whose CD collection has the greater ratio of rock CDs to total CDs.
7. math teachers to Spanish teachers
8. art and math teachers to Spanish teachers
9. A train car has 64 seats. There are 48 passengers on the train. Write the ratio of seats to passengers in simplest form.

	Glen	Nina
Classical CDs	4	8
Rock CDs	9	12
Other CDs	5	7

\qquad Date \qquad
\qquad
California Standards NS1.2, A- AF2.2, AF2.3

Lesson Practice

5-2 Rates

1. A part-time job pays $\$ 237.50$ for 25 hours of work. How much money does the job pay per hour?
2. A class trip consists of 84 students and 6 teachers. How many students per teacher are there?
3. A factory builds 960 cars in 5 days. What is the average number of cars the factory produces per day?
4. The Wireless Cafe charges $\$ 5.40$ for 45 minutes of Internet access. How much money does The Wireless Cafe charge per minute?
5. A bowler scores 3,152 points in 16 games. What is his average score in points per game?
6. Melissa drives 238 miles in 5 hours. What is her average rate of speed?
7. An ocean liner travels 1,233 miles in 36 hours. What is the ocean liner's average rate of speed?
8. A plane is scheduled to complete a 1,792-mile flightin 3.5 hours. In order to complete the trip on time, what should be the plane's average rate of speed?
9. The Nuthouse sells macadamia nuts in three sizes. The 12 oz jar sells for $\$ 8.65$, the 16 oz jar sells for $\$ 10.99$, and the 24 oz gift tin costs $\$ 16.99$. Which size is the best buy?
10. Nina paid $\$ 37.57$ for 13 gallons of gas. Fred paid $\$ 55.67$ for 19 gallons of gas. Eleanor paid $\$ 48.62$ for 17 gallons of gas. Who got the best buy?
\qquad Date \qquad Class \qquad

-NS1. 2

Practice

5-3 Identifying and Writing Proportions

Determine whether the ratios are proportional.

1. $\frac{3}{4}, \frac{24}{32}$
2. $\frac{5}{6}, \frac{15}{18}$
3. $\frac{10}{12}, \frac{20}{32}$
4. $\frac{7}{10}, \frac{22}{30}$
5. $\frac{9}{6}, \frac{21}{14}$
6. $\frac{7}{9}, \frac{24}{27}$
7. $\frac{4}{10}, \frac{6}{15}$
8. $\frac{7}{12}, \frac{13}{20}$
9. $\frac{4}{9}, \frac{6}{12}$
10. $\frac{7}{8}, \frac{14}{16}$
11. $\frac{9}{10}, \frac{45}{50}$
12. $\frac{3}{7}, \frac{10}{21}$

Find a ratio equivalent to each ratio. Then use the ratios to write a proportion.
13. $\frac{7}{9}$
14. $\frac{11}{12}$
15. $\frac{14}{15}$
16. $\frac{35}{55}$
17. $\frac{14}{10}$
18. $\frac{25}{18}$
\qquad Date \qquad Class \qquad
California Standards $\operatorname{NS} 1.3,-\mathrm{AF} 2.2$, AF2.3

Lesson Practice

 5-4 Solving Proportions

 5-4 Solving Proportions}Use cross products to solve each proportion.

1. $\frac{2}{5}=\frac{x}{35}$
2. $\frac{7}{r}=\frac{1}{4}$
3. $\frac{k}{75}=\frac{9}{15}$
4. $\frac{1}{3}=\frac{z}{27}$
5. $\frac{2}{11}=\frac{12}{d}$
6. $\frac{24}{s}=\frac{4}{12}$
7. $\frac{w}{42}=\frac{6}{7}$
8. $\frac{t}{54}=\frac{2}{9}$
9. $\frac{3}{8}=\frac{a}{64}$
10. $\frac{17}{34}=\frac{7}{f}$
11. $\frac{15}{h}=\frac{5}{6}$
12. $\frac{4}{15}=\frac{36}{c}$
13. $\frac{z}{25}=\frac{12}{5}$
14. $\frac{36}{k}=\frac{9}{4}$
15. $\frac{5}{14}=\frac{n}{42}$
16. $\frac{8}{9}=\frac{40}{m}$
17. $\frac{7}{c}=\frac{63}{54}$
18. $\frac{24}{21}=\frac{s}{35}$
19. $\frac{e}{22}=\frac{6}{15}$
20. $\frac{3}{v}=\frac{12}{17}$
21. $\frac{5}{14}=\frac{4}{a}$
22. Eight oranges cost $\$ 1.00$. How much will 5 dozen oranges cost?
23. A recipe calls for 2 eggs to make 10 pancakes. How many eggs will you need to make 35 pancakes?
\qquad Date \qquad Class \qquad California Standards NS1.3, AF2.1

LEssom Practice

5-5 Customary Measurements

Choose the most appropriate customary unit for each measurement.
Justify your answer.

1. the weight of a paperback book
2. the length of a dining room table

Convert each measure.
5. 6 mi to feet
8. $5,000 \mathrm{lb}$ to tons
11. 6.5 ft to inches
\qquad
\qquad
\qquad
6. 104 oz to pounds
9. 48 yd to feet
12. 20 qt to gallons
\qquad
\qquad
2. the capacity of a large soup pot
4. the weight of an elephant
\qquad
\qquad
7. 12 qt to pints
10. 96 fl oz to pints
\qquad
\qquad
14. One mile is about 1.61 kilometers. The volcano Mauna Kea is 120 km wide. What is the width of the volcano in miles, rounded to the nearest tenth of a mile?
15. A 1-pound weight has a mass of about 0.45 kilograms. A car weighs 2100 pounds. What is the mass of the car in kilograms, rounded to the nearest tenth of a kilogram?
\qquad Date \qquad Class \qquad
California Standards Preparation for \approx NS1.3

Lesson Practice

5-6 Similar Figures and Proportions

Identify the corresponding sides in each pair of triangles.

Then use ratios to determine whether the triangles are similar.
1.

2.

\qquad
\qquad
3.

4.

Use the properties of similarity to determine whether the figures are similar.
5.

6.

\qquad Date \qquad Class \qquad California Standards \& NS1.3

Practice

5-7 Using Similar Figures

$\triangle A B C \sim \triangle D E F$ in each pair. Find the unknown lengths.

1.

2.

4.

\qquad
5. The two rectangular picture frames at the right are similar. What is the height of the larger picture frame?

6. A palm tree casts a shadow that is 44 feet long. A 6-foot ladder casts a shadow that is 16 feet long. Use Estimate the height of the palm tree.

\qquad Date \qquad Class \qquad

- NS1. 3

Practice

5-8 Scale Drawings and Scale Models

Identify the scale factor.
1.

	Alligator	Toy Alligator
Length (in.)	175	7

2.

	Airplane	Model
Length (ft)	24	3

3.

	Car	Toy Car
Length (ft)	13.5	1.5

4.

	Person	Action Figure
Height (in.)	66	6

5.

	Boat	Model
Length (in.)	128	8

6.

	Fish	Fishing Lure
Length (in.)	18	2

7.

	Tiger	Stuffed Animal
Length (in.)	70	14

8.

	House	Dollhouse
Height (ft)	39.2	2.8

9. On a scale drawing, a school is 1.6 feet tall. The scale factor is $\frac{1}{22}$. Find the height of the school.
10. On a road map of Pennsylvania, the distance from Philadelphia to Washington, D.C., is 6.8 centimeters. What is the actual distance between the cities if the map scale is 2 centimeters $=40$ miles?
11. On a scale drawing, a bicycle is $6 \frac{4}{5}$ inches tall. The scale factor is $\frac{1}{6}$. Find the height of the bicycle.
\qquad Date \qquad Class \qquad California Standards Preparation for $4=$ NS1.4, - NS2.4

(1) $\frac{\text { Lesson }}{\text { 6-1 }} \frac{\text { Practice }}{} \begin{aligned} & \text { Introduction to Percents }\end{aligned}$

Write the percent modeled by each grid.
1.

2.

\qquad

Write each percent as a fraction in simplest form.
4. 16%
5. 49%
6. 20%
\qquad
\qquad
8. 18%
9. 60%
10. 35%
12. 86%
13. 79%
14. 56%
\qquad

Write each percent as a decimal.
16. 33%
17. 57%
18. 46%
\qquad
\qquad
\qquad
20. 4.7%
21. 13.2%
22. 75.8%
\qquad
24. 1.16%
25. 27.05%
26. 93.01%
27. 7.9%
\qquad Date \qquad Class \qquad
California Standards Preparation for NS1.4
Practice
6-2 Fractions, Decimals, and Percents
Write each decimal as a percent.

1. 0.17
2. 0.56
3. 0.04
4. 0.7
5. 0.025
6. 0.803
7. 0.3
8. 0.072

Write each fraction as a percent.

9. $\frac{13}{40}$
10. $\frac{3}{5}$
11. $\frac{3}{20}$
12. $\frac{5}{12}$
13. $\frac{5}{16}$
14. $\frac{3}{80}$
15. $\frac{5}{6}$
16. $\frac{19}{25}$
17. In a survey, 60 baseball fans were asked whether they thought the designated hitter rule should be changed. Forty-one fans thought the rule should be changed. What percent of the fans surveyed said that the designated hitter rule should be changed?
18. The police use a speed gun to monitor one part of a highway. During one hour, 6 out of 25 cars were traveling above the speed limit. What percent of the cars were traveling above the speed limit?
\qquad Date \qquad Class \qquad California Standards NS1.4, NS2.1

Lesson Practice

6-3 Estimating with Percents

Use a fraction to estimate the percent of each number.

1. 21% of 82
2. 35% of 42
3. 47% of 164
4. 9% of 68
5. 65% of 78
6. 77% of 198
7. 5% of 75
8. 31% of 148
9. 53% of 539
10. In 2004, about $\$ 38$ out of every $\$ 100$ spent on advertising was spent on television advertising. The amount spent on radio advertising was about 21% as much as was spent on television advertising. How much of every $\$ 100$ spent on advertising was spent on radio advertising?

Use 1% or 10% to estimate the percent of each number.
14. 32% of 46
18. 3% of 72
\qquad
22. 18% of 147
23. 5% of 837
24. 37% of 213
25. 2% of 188
26. The Fresh Acres Swim Club has a $\$ 35,000$ budget for pool maintenance this year. The club members have agreed to raise the budget by 4%. Estimate the pool maintenance budget for next year.
8. 89% of 51
\qquad
\qquad Date \qquad Class \qquad
California Standards \approx NS1.3, $<$ NS1.4
Practice
6-4 Percent of a Number
Find the percent of each number.

1. 25% of 56
2. 10% of 110
3. 5% of 150
4. 90% of 180
5. 125% of 48
6. 225% of 88
7. 2% of 350
8. 285% of 200
9. 150% of 125
10. 46% of 235
11. 78% of 410
12. 0.5% of 64

Find the percent of each number. Check whether your answer is reasonable.
13. 55% of 900
14. 140% of 50
15. 75% of 128
16. 3% of 600
17. 16% of 85
18. 22% of 105
19. 0.7% of 110
20. 95% of 500
21. 3% of 750
25. 0.1% of 950
26. 11% of 300
\qquad
29. The largest frog in the world is the goliath, found in West Africa.

This type of frog can grow to be 12 inches long. The smallest frog in the world is about 4% as long as the goliath. What is the approximate length of the smallest frog in the world?
\qquad Date \qquad Class \qquad
California Standards 4 NS1.3, \sim NS1.4, - AF1. 1

6-5 Solving Percent Problems

1. 50 is 40% of what number?
2. 18 is what percent of 60 ?
3. 4% of what number is 25 ?
4. What percent of 55 is 22 ?
5. 15 is 30% of what number?
6. 7 is what percent of 105 ?
7. 10% of what number is 14 ?
8. What percent of 32 is 4 ?
9. 1% of what number is 11 ?
10. 12 is what percent of 96 ?
11. 80% of what number is 160 ?
12. What percent of 75 is 6 ?
13. 8% of what number is 2 ?
14. 24 is 40% of what number?
15. 16 is what percent of 200 ?
16. What percent of 150 is 60 ?
17. 20% of what number is 14 ?
18. The sales tax on a $\$ 750$ computer at J \& M Computers is $\$ 48.75$. What is the sales tax rate?
\qquad
19. A hardcover book sells for $\$ 24$ at The Bookmart. Ben pays a total of $\$ 25.02$ for the book. What is the sales tax rate?
\qquad Date \qquad Class \qquad
California Standards NS1.4
Lesson Practice

6-6 Percent of Change

Find each percent of change. Round answers to the nearest tenth, if necessary.

1. 20 is decreased to 11
2. 56 is decreased to 14 \qquad
3. 18 is increased to 45 \qquad
4. 126 is decreased to 48 \qquad
5. 42 is increased to 72 \qquad
6. 95 is increased to 145 \qquad
7. 105 is decreased to 32 \qquad
8. 93 is decreased to 90 \qquad
9. 25 is increased to 100 \qquad
10. 90 is decreased to 75 \qquad
11. 65 is increased to 144 \qquad
12. 24 is increased to 30 \qquad
13. 84 is decreased to 8 \qquad
14. 248 is decreased to 200 \qquad
15. 75 is increased to 350 \qquad
16. 16 is decreased to 2 \qquad
17. A backpack that normally sells for $\$ 39$ is on sale for 33% off.

Find the amount of the discount and the sale price.
18. A sporting goods store is having a closeout on a certain style of running shoes. They are marked 55% off the regular price. The regular price is $\$ 79.95$. Find the amount of the discount and the sale price.
19. A gallery owner purchased a very old painting for $\$ 3,000$. The painting sells at a 325% increase in price. What is the retail price of the painting?
\qquad
20. In August, the Simons' water bill was $\$ 48$. In September, it was 15% lower. What was the Simons' water bill in September?
\qquad Date \qquad Class \qquad
California Standards - NS1.4, AF1.1

LEsSoN Practice

6-7 Simple Interest

Find each missing value.

1. $P=\$ 1,500, r=5 \%, t=3$ years
$I=$ \qquad
2. $I=\$ 30, r=4 \%, t=2$ years $P=$ \qquad
3. $I=\$ 20, P=\$ 250, t=2$ years $r=$ \qquad
4. $P=\$ 525, r=3 \%, t=1$ year
$I=$ \qquad
5. $I=\$ 450, r=6 \%, t=4$ years
$P=$ \qquad
6. $I=\$ 1,275, P=\$ 5,100, t=5$ years $r=$ \qquad
7. $P=\$ 1,300, r=4.5 \%, t=6$ months $I=$ \qquad
8. $I=\$ 891, P=\$ 2,700, t=5.5$ years
$r=$ \qquad
9. $P=\$ 6,000, r=4 \%, t=2$ years
$I=$
10. $I=\$ 180, r=5 \%, t=3$ years
$P=$ \qquad
11. $I=\$ 144, P=\$ 800, t=3$ years
$r=$ \qquad
12. $P=\$ 3,200, r=6 \%, t=4$ years
$1=$ \qquad
13. $I=\$ 1,440, r=3 \%, t=5$ years
$P=$ \qquad
14. $I=\$ 3,920, P=\$ 14,000, t=4$ years
$r=$ \qquad
15. $I=\$ 47.25, r=3.5 \%, t=1.5$ years $P=$ \qquad
16. $I=\$ 126, P=\$ 400, t=9$ years
$r=$ \qquad
17. You deposit $\$ 2,500$ in an account that earns 4% simple interest. How long will it be before the total amount is $\$ 3,000$?
18. You deposit $\$ 5,000$ in account that earns 6.5% simple interest. How much will be in the account after 3 years?
19. A deposit of $\$ 10,000$ was made to an account the year you were born. After 12 years, the account is worth $\$ 16,600$. What simple interest rate did the account earn?
20. How long will it take for $\$ 6,500$ to double at a simple interest rate of 7% ? Round to the nearest tenth of a year.
\qquad Date \qquad Class \qquad
California Standards SDAP1. 1

LEsSon Practice

7-1 Mean, Median, Mode, and Range

Find the mean of each data set.
1.

Brian's Math Test Scores	86	90	93	85	79	92

2.

Heights of Basketball Players (in.)	72	75	78	72	73

Find the mean, median, mode, and range of each data set.
3.

School Sit-Up Records (sit-ups per minute)	31	28	30	31	30

\qquad
\qquad
4.

Team Heart Rates (beats per min)	70	68	70	72	68	66

5.

Daily Winter Temperatures $\left({ }^{\circ} \mathrm{F}\right)$	45	50	47	52	53	45	51

6. Anita has two sisters and three brothers. The mean of all their ages is 6 years. What will their mean age be 10 years from now? Twenty years from now?
7. In a class of 28 sixth graders, all but one of the students are 12 years old. Which two data measurements are the same for the student's ages? What are those measurements?
\qquad Date \qquad Class \qquad
California Standards SDAP1.1, SDAP1.2, SDAP1.3

Practice

7-2 Additional Data and Outliers

Use the table to answer Exercises 1-3.

1. The table shows population data for some of the least-crowded states. Find the mean, median, and mode of the data.
2. Alaska has the lowest population density of any state. Only about 1 person per square mile lives there.

Population Densities

State	People $($ per mi$)$
Idaho	16
Nevada	18
New Mexico	15
North Dakota	9
South Dakota	10

\qquad
\qquad
3. In Exercise 1, why is Alaska's population density an outlier for that data set?
\qquad
\qquad
Use the table to answer Exercises 4-5.
4. The table shows some of the states with the most counties. Find the mean, median, and mode of the data.
\qquad
\qquad
5. With 254 counties, Texas has more counties than any other state. Add this number to the data in the table and find the mean, median, and mode.
\qquad
\qquad
\qquad Date \qquad Class \qquad
California Standards SDAP1.1, SDAP1.3, SDAP1.4

Lesson Practice

7-3 Choosing the Most Useful Measure

Jenny plays for the Tigers basketball team. The list shows the number of points that the team scored in their last ten games. Use the data for Exercises 1-4.

18	62	21	24	22	23	25	18	30	22

1. Find the mean of the data.
2. Find the median of the data.
3. Jenny wants to know the typical number of points the team scored. Is the mean or the median more useful? Why?
4. Jenny wants to convince a friend that the Tigers deserve to go to the playoffs. Should she use the mean or the median to describe the data? Why?
\qquad
\qquad
Tyrell is shopping for an MP3 player. The list shows the prices of eight MP3 players. Use the data for Exercises 5-9.

$\$ 165$	$\$ 145$	$\$ 200$	$\$ 180$	$\$ 48$	$\$ 180$	$\$ 150$	$\$ 160$

5. Find the mean of the data.
6. Find the median of the data.
7. Find the mode of the data.
8. Tyrell wants to convince his father that MP3 players are not too expensive and that he should get one for his birthday. Should he use the mean, median, or mode to describe the data? Why?
9. Suppose Tyrell wants to convince someone that MP3 players are too expensive. Which measure should he use in this case?
Why?
\qquad Date \qquad Class \qquad
California Standards - SDAP2.3, -SDAP2.5

Lesson Practice

7-4 Analyzing Data Displays

The bar graph shows the elevations of the highest points in several states. Use the graph for Exercises 1-3.

1. Which state has the highest elevation?
2. About how much higher is Granite Peak than Guadalupe Peak?
3. About how much higher is Mount Whitney than Mount Marcy?
\qquad

The circle graph below shows the results of a survey of 100 people. They were asked about their favorite vacation destinations. Use the graph for Exercises 4-6.

Favorite Vacation Destinations

The line graph shows the price of gasoline in the U.S. over several years. Use the graph for Exercises 7-8.

Highest Altitude in State

4. Did more people pick mountains or beaches?
5. About what percent of people picked mountains?
6. According to the survey, 15% of the people chose famous landmarks. How many people chose famous landmarks?
\qquad
7. When did the cost of gasoline decrease the most?
8. About how much did gasoline cost in 1995?
\qquad

Name \qquad Date \qquad Class \qquad
California Standards $4=$ SDAP2.3, $\operatorname{SDAP} 2.5$
LEsson] Practice

7-5 Misleading Graphs

1. Which graph could be misleading? Why?

Graph A

Animal

Graph B

> Average Life Span of Selected Animals

Explain why each graph could be misleading.

2.

3.

Money Raised for School Library Fund

\qquad
\qquad
\qquad
\qquad Date \qquad Class \qquad
California Standards - NS1.3, SDAP2.1, SDAP2.5

Practice

7-6 Populations and Samples

For each situation, explain whether it makes sense to use a sample.

1. The mayor of a town wants to know the average salary of the town's residents.
2. The mayor of a town wants to know the average salary of the six people on her staff.

According to the U.S. Census Bureau, about 55\% of all U.S. households have Internet access. Daljit surveys a random sample of households in two cities. His data is shown in the table.

Internet Access

Sample	Households with Access	Households without Access
City A	22	18
City B	14	36

3. How does the sample for City A compare to the national percentage?
4. How does the sample for City B compare to the national percentage?

The doctor estimates that more than 220 of the 500 patients in his database take a vitamin each day. A random sample of 60 patients shows that 27 of them take a vitamin each day.
5. Use a proportion to predict the total number of patients who take a vitamin each day.
6. Is the doctor's estimate likely to be valid?
7. The doctor's assistant claims that at least 350 of the

500 patients have seen the doctor in the past year. A random survey of 45 patients shows that 18 have seen the doctor in the past year. Is the assistant's claim likely to be valid? Explain.
\qquad Date \qquad Class \qquad
California Standards SDAP2. 2

Practice

7-7 Selecting Samples

Identify the sampling method that is used in each situation.

1. Ronny wants to know how often the average resident of his town of his town eats out. He surveys 45 people as they leave a restaurant.
2. A worker in a factory checks every 100th car part as it moves past her on an assembly line.

Manuel and Carolyn survey customers of a car wash to find out if they are satisfied. They use the methods shown in the table.

Car-Wash Survey

Sampling Method	Results Survey
Manuel calls every 25th name on a list of customers.	70% say they are satisfied.
Carolyn makes survey cards available to customers who wish to fill them out.	40% say they are satisfied.

3. Describe the sampling methods that Manuel and Carolyn used.
4. Whose sampling method will better represent the entire population?

Lynne and LeVon survey members of a health club to find out how many members visit the club at least once a week.

Car-Wash Survey

Sampling Method	Results Survey
Lynne surveys 50 members while they are using the equipment at the club.	85% say they visit the club at least once a week.
LeVon telephones 60 members chosen at random from the club's database.	65% say the visit the club at least once a week.

5. Describe the sampling methods that Lynne and LeVon used.
6. Whose sampling method will better represent the entire population?
\qquad Date \qquad Class \qquad
California Standards SDAP2.3, SDAP2.4, ©SDAP2.5

Practice

$7-8$ Identifying Sampling Errors and Bias

Determine whether each sample may be biased. Explain.

1. Mr. Chu puts the names of all his students in a hat and chooses 12 names without looking. He surveys these students about the amount of time they spend studying.
2. The editor of a computer magazine wants to know how much time the average American spends surfing the Web. The editor sends a survey to 2000 people who subscribe to the magazine.
\qquad
\qquad
Determine whether each survey question may be biased. Explain.
3. Do you prefer the new and improved Tasty-O's or the original version?
4. Which candidate will you vote for in the upcoming mayoral election?

Alicia wants to know what students at her school think of the film Hero-Man III. Use the information below and the graph to answer each question.

Sample: 80 students chosen at random from the school directory

Question: What is your opinion of this summer's blockbuster hit Hero-Man III?

Claim: A majority of students like the film.
5. Is the sample or question biased? Why?

Results:
Movie Survey

6. Is Alicia's claim valid? Why or why not?
\qquad Date \qquad Class \qquad

California Standards \& SDAP3.3

Practice

Lesson Practice
 8-1 Introduction to Probability

Determine whether each event is impossible, unlikely, as likely as not, likely, or certain.

1. rolling an even number on a number cube labeled 1 through 6
2. picking a card with a vowel on it from a box of cards in which each letter of the alphabet is written on a card \qquad
3. spinning a number greater than 2 on a spinner with 10 equal sections marked 1 through 10
4. drawing a red marble from a bag of black, blue, and green marbles
5. flipping a coin and getting heads or tails
6. rolling a number that is less than three 5 times in a row on number on a number cube labeled 1 through 6

Solve.

7. A bag contains 3 green marbles, 7 blue marbles, and 2 black marbles. The probability of randomly picking a green marble is $\frac{1}{4}$. What is the probability of not picking a green marble?
8. A spinner has 8 equal sections labeled 1 through 8 . The probability of spinning a number that is greater than or equal to 6 is $\frac{3}{8}$. What is the probability of spinning a number that is not greater than or equal to 6 ?
9. The probability of randomly drawing a red card from a bag that contains red, blue, and green cards is $\frac{3}{10}$. What is the probability of not drawing a red card?
10. Myra almost always spends at least 45 minutes on the treadmill. If Myra got on the treadmill at 5:20 P.M., estimate the probability that she will still be on the treadmill at 6:00.
11. Morris rarely arrives home before 4:00 P.M. It is now 3:20 P.M. Estimate the probability that Morris will arrive home in the next 30 minutes.
\qquad
\qquad
California Standards SDAP3.2, SDAP3.3

Practice

8-2 Experimental Probability

Find the experimental probability. Write your answer as a fraction, as a decimal, and as percent.

1. Jaclyn is a soccer goalie. If she has 21 out of 25 saves in practice, what is the experimental probability that she will have a save on the next shot on goal?
2. If Harris hit the bull's-eye 3 out of 8 times at archery practice, what is the experimental probability that he will hit the bull's-eye on his next try?
3. Nathan inspects new pants at a factory. Of the first 56 pairs of pants he inspected 49 were acceptable. What is the experimental probability that the next pairs of pants will be acceptable?
4. Sara has gone to work for 60 days. On 39 of those days she arrived at work before 8:30 A.M. On the rest of the days she arrived after 8:30 A.M. What is the experimental probability that she will arrive at work after 8:30 A.M. the next day she goes to work?

Solve:

5. After a movie premiere, 99 of the first 130 people surveyed said they liked the movie.
a. What is the experimental probability that the next person surveyed will say he or she liked the movie?
b. What is the experimental probability that the next person surveyed will say he or she did not like the movie?
6. For the past 30 days, Naomi has been recording the number of customers at her restaurant between 10 A.M. and 11 A.M. During that hour, there have been fewer than 20 customers on 25 out of 30 days.
a. What is the experimental probability that there will be fewer than 20 customers on the thirty-first day?
b. What is the experimental probability that that there will be more than 20 customers on the thirty-first day?
7. For the past four weeks, Nestor has been recording the daily high temperatures. During that time, the high temperature has been below 45° on 20 out of 28 days. What is the experimental probability that the high temperature will be below 45° on the twenty-ninth day?
\qquad Date \qquad
\qquad
California Standards \&-SDAP3.3

Practice

8-3 Theoretical Probability

Find the probability of each event. Write your answer as a fraction, as a decimal, and as a percent. Round to the nearest tenth of a percent.

1. randomly choosing a white counter from a bag of 12 red counters, 12 white counters, 12 green counters, and 12 blue counters
2. tossing two fair coins and having one land on tails and one land on heads
3. rolling a number greater than 1 on a fair number cube
4. randomly drawing an orange disk from a bag of 14 black disks, 4 blue disks and 12 orange disks
5. randomly drawing 1 of the 6 R's from a bag of 100 letter tiles
6. spinning a number less than 7 on a fair spinner with 8 equal sections labeled 1-8

A set of cards has 20 cards with stars, 10 cards with squares, and 15 cards with circles. Find the probability of each event when a card is chosen at random.
7. square \qquad 8. circle \qquad
9. star or circle \qquad 10. not circle or square
\qquad
There are 14 girls and 18 boys in Ms. Wiley's class. Ms. Wiley randomly selects one student to solve a problem. Find the probability of each event.
\qquad 12. selecting a girl \qquad
\qquad Date \qquad Class \qquad
California Standards 4 SDAP3.1, SDAP3. 3

LESSON
 Practice

8-4 Sample Spaces

1. Marcus spins the spinner at the right and flips a dime at the same time. What is the theoretical probability of each outcome?

2. For lunch, students have a choice of a hot dog, a hamburger, or pizza and a choice of an apple, a pear, or grapes. If Britney picks a sack lunch at random from a tray that contains one lunch of each type, what is the probability that she will choose a lunch with pizza and grapes?
3. Susan and Ryan are playing a game that involves spinning the spinner at the right and flipping a penny. What is the probability that the penny will land on heads and the spinner will stop on 2?

\qquad
4. An Italian restaurant offers small, medium, and large calzones.

The choices of fillings are cheese, sausage, spinach, or vegetable. How many different calzones can you order?
5. There are 5 ways to go from Town X to Town Y . There are 3 ways to go from Town Y to Town Z. How many different ways are there to go from Town X to Town Z , passing through Town Y ?
6. Rasheed has tan pants, black pants, gray pants, and blue pants. He has a brown sweater and a white sweater. How many different ways can he wear a sweater and pants together?
\qquad Date \qquad Class \qquad
California Standards SDAP3.1, SDAP3.4

Practice

8-5 Disjoint Events

Determine whether each set of events is disjoint. Explain.

1. choosing a pencil or a pen from a backpack that contains pencils, pens, highlighters, and felt-tip markers
2. choosing an even number or a multiple of 4 from among the numbers 1-20.

Find the probability of each set of disjoint events.
3. rolling an odd number or a 6 on a number cube
4. choosing a vowel or a P from the letters in the word apple
5. choosing a peanut or a cashew from a bowl that contains only 10 peanuts, 5 cashews, and 10 pistachios
6. choosing an even number or a 7 from among the numbers 1-10 \qquad

Amanda rolls two number cubes. She wins a prize if the product of the numbers rolled is 12 or 30.
7. Complete the grid to show the sample space.
8. Find the probability that Amanda will win a prize.

First Number Cube

\qquad Date \qquad Class \qquad
California Standards SDAP3.3, SDAP3.4, SDAP3.5

Lesson Practice

8-6 Independent and Dependent Events

Decide if each set of events is independent or dependent. Explain your answer.

1. A student spins a spinner and chooses a Scrabble ${ }^{\circledR}$ tile
2. A boy chooses a sock from a drawer of socks, then chooses a second sock without replacing the first.
\qquad
\qquad
3. A student picks a raffle ticket from a box, replaces the ticket, then picks a second raffle ticket.
\qquad
\qquad
Find the probability of each set of independent events.
4. drawing a red checker from a bag of 9 black checkers and 6 red checkers, replacing it, and drawing another red checker
5. drawing a black checker from a bag of 9 black checkers and 6 red checkers, replacing it, and drawing a red checker
6. rolling a 1, 2, or 3 on the first roll of a 1-6 number cube and rolling a 4,5 , or 6 on the second roll of the same cube

Solve.

7. Randy has 4 pennies, 2 nickels, and 3 dimes in his pocket. If he randomly selects a coin, replaces it, then makes another random selection, what is the probability that both are dimes?
\qquad Date \qquad Class \qquad
California Standards NS1.3, SDAP3.2, SDAP3.3

Practice

8-7 Making Predictions

Use the sample survey to make predictions.

1. If you randomly selected a person, what is the probability that his or her favorite sport is basketball?
2. In a group of 200 people, how many do you predict would choose baseball as their favorite sport?
3. In a class of 45 students, how many students do you predict would choose soccer as their favorite sport?

Favorite Sports

Sport	Number of Students
Football	28
Basketball	35
Soccer	20
Baseball	45
Hockey	15
Other	7

\qquad
4. In a group of 100 people, how many do you predict would choose hockey as their favorite sport?
5. Based on a sample survey, a local newspaper states that 75% of all the city's voters turned out for the city council elections. If you randomly selected 200 people in that city, how many do you predict would have voted in the election?
\qquad
6. If you roll a fair number cube 30 times, how many times would you expect to roll an odd number?
\qquad
7. Based on a sample survey, a company claims that 8% of its customers were unhappy with the DVD players they bought. If the company sold DVD players to 2,000 people last year, how many of those customers do you predict were unhappy with their DVDs?
8. If you toss a fair coin 48 times, how many times do you predict it will land tails up?
\qquad Date \qquad Class \qquad
California Standards Preparation for MG2.1

(1) Lesson Practice
 9-1 Introduction to Geometry

Identify the figures in the diagram.

1. three points \qquad
2. one line \qquad
3. a plane \qquad

4. four rays \qquad
5. three line segments \qquad

Identify the figures in the diagram.

6. four points \qquad
7. three lines \qquad
8. a plane \qquad

9. three rays \qquad
10. four line segments \qquad
Identify the figures in the diagram.
11. four points \qquad

12. four rays \qquad
13. five line segments \qquad
14. Identify the line segments that are congruent in the figure.

\qquad Date \qquad Class \qquad
California Standards Preparation for MG2.1 and MG2.3

Lesson Practice

9-2 Measuring and Classifying Angles

Use a protractor to measure each angle.

1.

2.

3.

Use a protractor to draw an angle with each given measure.
4. 70°
5. 115°
6. 45°

Classify each angle as acute, right, obtuse, or straight.
7.

8.

9.

10. The frame for a kite has two angles that together form a right angle. What type of angle is each of those angles? Explain.
\qquad
\qquad
11. What kinds of angles are in each of the letters in this word? TAXI

Name \qquad Date \qquad Class \qquad California Standards MG2.1

1 Lesson Practice
 9-3 Angle Relationships

Identify the type of each angle pair shown.
1.

2.

Use the diagram to tell whether the angles are complementary, supplementary, or neither.
3. $\angle A Q C$ and $\angle G Q C$
\qquad
4. $\angle B Q D$ and $\angle D Q E$
\qquad
5. $\angle C Q E$ and $\angle E Q F$
\qquad
6. $\angle G Q F$ and $\angle F Q E$

7. $\angle B Q C$ and $\angle D Q C$
\qquad Date \qquad Class \qquad
California Standards AF1.1, MG2.1, MG2.2

Practice

9-4 Finding Angle Measures

Identify the type of each angle pair shown.

1.

2.

Find each unknown angle measure.
3. The angles are supplementary.

4. The angles are complementary.

5. Angles W and X are supplementary. If $\mathrm{m} \angle W$ is 37°, what is $\mathrm{m} \angle X$?
6. Angles S and T are complementary. If $m \angle S$ is 64°, what is $\mathrm{m} \angle T$?
7. Angles C and D are supplementary. If $\mathrm{m} \angle C$ is 83°, what is $\mathrm{m} \angle D$?
8. Angles U and V are complementary. If $m \angle U$ is 41°, what is $\mathrm{m} \angle V$?
9. Is the following statement always true, sometimes true, or never true? Explain your reasoning. Two congruent angles that are complementary both measure 45°.
\qquad
\qquad
\qquad Class \qquad
California Standards Preparation for MG2.3

Practice

9-5 Classifying Polygons
Determine whether each figure is a polygon. Explain your answer.
1.

2.

3.

4.

5.

6.

Name each polygon.
7.

8.

9.

10.

11.

12.

Name each figure and tell whether it is a regular polygon.
Explain your answer.
13.

14.

15.

\qquad Date \qquad Class \qquad
California Standards Preparation for MG2.3

Lesson Practice
 9-6 Classifying Triangles

Classify each triangle according to its sides and angles.
1.

4.
5.

6.
\qquad

2.

3.

7.

8.

9.

Identify the different types of triangles in each figure and determine how many of each there are.
10.

11.

\qquad Date \qquad Class \qquad California Standards AF1.1, MG2.1, MG2.2

LEsson Practice

9-7 Angle Measures in Triangles
Find the unknown angle measure in each triangle.
1.

2.

3.

Use the diagram to find the measure of each indicated angle.
4. $\angle C B D$ \qquad
5. $\angle D A C$ \qquad
6. $\angle A B C$ \qquad
7. $\angle E B A$ \qquad

8. $\angle A C B$ \qquad
9. The figure shows a design for a new intersection. Find the unknown angle measure a. Show your work.
\qquad
\qquad
\qquad

\qquad Date \qquad Class \qquad
California Standards MG2.3

Lesson Practice
 9-8 Classifying Quadrilaterals

Give all of the names that apply to each quadrilateral. Then give the name that best describes it.
1.

2.

3.

4.

5.

6.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Draw each figure. If it is not possible to draw, explain why.
7. A rectangle that is not a parallelogram.
\qquad
$\begin{array}{llllll}\bullet & \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet & \bullet & \bullet\end{array}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
California Standards Extension of MG2.2
\square Lesson Practice

9-9 Congruent Figures

Identify any figures that appear to be congruent.
1.

2.

Determine whether the triangles are congruent.
3.

$$
\frac{22 \mathrm{~m}}{10 \mathrm{~m} 14 \mathrm{~m}} \frac{14 \mathrm{~m} \quad 10 \mathrm{~m}}{22 \mathrm{~m}}
$$

4.

5.

6.

Determine the missing measure or measures in each set of congruent polygons.
7.

9.

8.

10.

\qquad Date \qquad Class \qquad
California Standards AF1.1, AF1.2, AF3.1, AF3.2
Practice
LESSON
Perimeter
Find the perimeter of each figure.
1.

2.

3.

4.

Find the perimeter P of each parallelogram.
5.

6.

7.

Find each unknown measure.
8. What is the length of side b if the perimeter equals 47 in.?

9. What is the length of side s if the perimeter equals 119 yd ?

10. Benjamin is putting a fence around his rectangularshaped yard. The yard is 38 feet long and 27 feet wide. How many feet of fencing does Benjamin need to surround his entire yard?
11. If you drove from Bakersville to Salem and then to San

Mateo, your entire 81-mile journey would form a triangle.
The distance from Salem to San Mateo is 24 miles.
The distance from Bakersville to San Mateo is 40 miles.
How many miles is it from Salem to Baskerville?
\qquad Date \qquad Class \qquad
California Standards AF1.1, AF3.1, AF3.2, MG1.1, MG1.2
Lesson Practice
10-2 Circles and Circumference
Use the circle to answer each question.

1. Name the circle.
2. Name two diameters.
3. Name four radii.

A gardener is putting in a circular garden. The inner circle is a vegetable garden, and the outer circle is a flower garden. Find the circumference by using $\frac{22}{7}$ as an estimate for π.

4. If the diameter of the vegetable garden is 6 feet, what is its circumference to the nearest hundredth?
$C \approx$ \qquad
5. If the radius of the flower garden is 8 feet, what is its circumference to the nearest hundredth?

Find each missing value to the nearest hundredth.
Use 3.14 as an estimate for π.
6.

$C=$ \qquad
7.

$C=$ \qquad
8. The first Ferris wheel was built in 1893 in Chicago. Its diameter was 250 feet. How many feet did the Ferris wheel rotate with each complete turn? Use 3.14 as an estimate for π.
9. Stonehenge, a circle of large carved stones in England, was built more than 1,000 years ago. The circle of stones has a diameter of 108 feet. What is the circumference of Stonehenge?
\qquad Date \qquad Class \qquad
California Standards NS2.1, AF1.1, AF2.1, AF3.1, AF3.2

Lesson Practice

10-3 Area of Parallelograms

Find the area of each parallelogram.
1.

2.

3.

11 cm
4.

5.

$10 \frac{1}{2} \mathrm{in}$.
6.

Find the area of each rectangle.
7.

13 ft
8.

$$
7 \frac{1}{2} \mathrm{~m}
$$

9.

13.7 in.
10. A dollar bill is 15.5 cm long and 6.5 cm wide. What is the area of a dollar bill?
\qquad
11. A rectangular hallway has an area of $70 \mathrm{ft}^{2}$. The width of the hallway is 4 feet. What is the length of the hallway?
\qquad
\qquad Date \qquad Class \qquad California Standards AF1.2, AF3.1, AF3.2

Lesson Practice

10-4 Area of Triangles and Trapezoids

Find the area of each triangle.
1.

2.

3.

4.

5.

6.

Find the area of each trapezoid.
7.

8.

9.

10.

11.

12.

13. The state of Montana is shaped somewhat like a trapezoid. What is the approximate area of Montana?

\qquad Date \qquad Class \qquad
California Standards AF3.1, AF3.2, MG1.1, MG1.2

LESSON Practice

10-5 Area of Circles

1. Find the area of the circle by using a formula. Use 3.14 as an estimate for π. Then use an estimate to check whether your answer is reasonable.

Find the area of each circle to the nearest tenth. Use 3.14 as an estimate for π.
2.

3.

4.

5.

6.

7.

8.

9.

10.

11. A Susan B. Anthony dollar coin has a diameter of 26.50 millimeters. What is the area of the coin to the nearest hundredth? Use 3.14 as an estimate for π.
12. A tablecloth for a round table has a radius of 21 inches. What is the area of the tablecloth? Use $\frac{22}{7}$ as an estimate for π.
\qquad Date \qquad Class \qquad California Standards Extension of AF3.1, AF3.2, MG1.1, MG1.2

Lesson Practice
 10-6 Area of Irregular and Composite Figures

Estimate the area of each figure. Each square represents 1

 square foot.1.

2.

Find the area of each figure. Use 3.14 as an estimate for π.
3.

4.

5.

6.

7.

8.

9. Marci is going to use tile to cover her terrace. How much tile does she need?

\qquad
\qquad Date \qquad Class \qquad
California Standards Preparation for MG1.3

(1) Lesson Practice
 10-7 Three-Dimensional Figures

Identify the number of faces, edges, and vertices in each threedimensional figure.
1.

2.

3.

Tell whether each figure is a polyhedron and name the three-dimensional figure.
4.

5.

6.

7. Kelly wants to make a box in the shape of a cube. How many pieces of wood does she need? In what shape should she cut them? Explain.
8. Kwan made a sculpture in the shape of a polyhedron. It only has one base that is a triangle. What three-dimensional figure is her sculpture? Explain your reasoning.
\qquad
\qquad
\qquad Date \qquad Class \qquad
California Standards AF3.1, AF3.2, MG1.3

Lessom Practice

10.8 Volume of Prisms

Find the volume of each rectangular prism.
1.

2.

3.

4.

5.

6.

Find the volume of each triangular prism.
7.

8.

9.

10. Peter is making a concrete ramp in the shape of a triangular prism. The ramp will have the dimensions shown. Peter has $10 \mathrm{ft}^{3}$ of concrete. Does he have enough concrete? Explain.

\qquad Date \qquad Class \qquad California Standards AF3.1, AF3.2, MG1.3

LEsson Practice

10-9 Volume of Cylinders

Find the volume V of each cylinder to the nearest cubic unit.
1.

2.

5.

7.

4.

6.

\qquad
8.

9.

10. A cylindrical package of oatmeal is 20 centimeters tall. The diameter of its base is 10 centimeters. About how much oatmeal does the package hold?
11. The volume of a can is about $50.24 \mathrm{in}^{3}$. The radius of its base is 2 inches. How tall is the can?
\qquad Date \qquad Class \qquad
California Standards AF3.1, AF3.2

Lesson Practice

10-10 Surface Area
Find the surface area S of each prism.
1.

2.

Find the surface area S of each pyramid.
3.

4.

Find the surface area S of each cylinder. Write your answers in terms of π.
5.

6.

7. Why can you find an exact surface area measurement for a prism and pyramid but not for a cylinder?
8. The surface area of a rectangular prism is 48 square feet.

The area of its front is 4 square feet, and the area of one side is 10 square feet. What is the area of the top of the prism?
\qquad Date \qquad Class \qquad
California Standards Preview of 2 7AF4. 1

Practice

11-1 Solving Two-Step Equations

Solve. Check each answer.

1. $7 x+8=36$
2. $-3 y-7=2$
3. $4 a-13=19$
4. $6 a-4=-2$
5. $5 k+2=6$
6. $9 m-14=-8$

Solve.
7. $\frac{v}{4}-3=5$
8. $\frac{u}{5}+3=1$
9. $6+\frac{z}{9}=9$
10. $-7+\frac{f}{2}=-1$
11. $9+\frac{w}{4}=-5$
12. $\frac{e}{7}-3=-5$
13. $-8+\frac{d}{5}=2$
14. $\frac{u}{5}+3=6$
15. $\frac{f}{3}+5=8$
16. Two years of local Internet service costs $\$ 685$, including the installation fee of $\$ 85$. What is the monthly fee?
\qquad
\qquad Date \qquad Class \qquad
California Standards Preview of 7AF1.3, AF1.2, AF3.1, AF3.2

Lesson Practice

11-2 Simplifying Algebraic Expressions

Identify like terms in each list.

1. $3 a b^{2} b^{3} 4 b^{2} 45 a$
2. $x x^{4} 4 x \quad 4 x^{2} \quad 4 x^{4} \quad 3 x^{2}$
3. $6 m 6 m^{2} \quad n^{2} 2 n 24 m 5 n$
4. $12 s \quad 7 s^{4} \quad 9 s \quad s^{2} \quad 5 \quad 5 s^{4} 2$

Simplify. Justify your steps using the Commutative, Associative, and Distributive Properties when necessary.
5. $2 p+22 q^{2}-p$
6. $x^{2}+3 x^{2}-4^{2}$
7. $n^{4}+n^{3}+3 n-n-n^{3}$
8. $4 a+4 b+2-2 a+5 b-1$
9. $32 m^{2}+14 n^{2}-12 m^{2}+5 n-3$
10. $2 h^{2}+3 g-2 h^{2}+2^{2}-3+4 g$
11. Write an expression for the perimeter of the figure at the right. Then simplify the expression.
\qquad
\qquad
12. Write an expression for the combined perimeters of the figures at the right. Then simplify the expression.

\qquad Date \qquad Class \qquad
California Standards Preview of 7AF1.3, Preview of 1A5.0

Practice

11-3 Solving Multi-Step Equations
Solve.

1. $15 x-8-3 x=16$
2. $5 n+3+4 n=30$
3. $h-6+7 h=42$
4. $-3 g+6+2 g=15$
5. $-2 b+7-3 b=2$
6. $5 y+1+3 y=-15$
7. $4 k-14+3 k=21$
8. $9 m+10-14 m=-5$
9. $-2 d+18-4 d=60$
10. $3(n+5)+2=26$
11. $4-2(v-6)=-8$
12. $14+16(t+6)=-18$
13. $4(m-3)+38=18$
14. $4=8(s-1)-20$
15. $5(c+3)+6=61$
16. Joel has twice as many CDs as Mariella has. Subtracting 7 from the number of CDs Joel has and dividing by 3 equals the number of CDs Blake has. If Blake has 25 CDs, how many CDs does Mariella have?
\qquad
\qquad
\qquad

Practice

11-4 Solving Equations with Variables on Both Sides

Group the terms with the variables on one side of the equal

 sign and simplify.1. $10 t=6 t+24$
2. $-6 x-32=2 x$
3. $j=20-4 j$
4. $-5 d+40=5 d$
5. $9 m-28=2 m$
6. $\frac{8}{9} x=8+\frac{4}{9} x$

Solve.

7. $8 k=6 k-26$
8. $32-5 v=3 v+8$
9. $-12 y-10=-6 y+14$
10. $\frac{5}{8} a+6=\frac{3}{4} a$
11. $\frac{1}{4} n+10=\frac{2}{3} n$
12. $20+\frac{1}{5} d=\frac{7}{10} d+16$
13. Members of the Lake Shawnee Club pay $\$ 40$ per summer season plus $\$ 7.50$ each time they rent a boat. Nonmembers pay $\$ 12.50$ each time they rent a boat. How many times would both a member and a nonmember have to rent a boat in order to pay the same amount? \qquad
\qquad Date \qquad Class \qquad
California Standards Preview of 7AF1.1

Lessow Practice

11-5 Introduction to Inequalities

Write an inequality for each situation.

1. The temperature today will be at most $50^{\circ} \mathrm{F}$. \qquad
2. The temperature tomorrow will be above $70^{\circ} \mathrm{F}$. \qquad
3. Yesterday, there was less than 2 inches of rain. \qquad
4. Last Monday, there was at least 3 inches of rain. \qquad
Graph each inequality.
5. $t \leq-2$

6. $j>-5$

7. $y \leq 0$

8. $b<\frac{1}{2}$

Graph each compound inequality.

9. $f>3$ or $f<-2$

10. $-4 \leq w \leq 4$

11. $b<0$ or $b \geq 5$

12. $y \geq 3$ or $y \leq-1$

13. $-4<m<-2$

\qquad Date \qquad Class \qquad California Standards Preview of \& 7AF4.0

Lesson Practice

11-6 Solving Inequalities by Adding or Subtracting

Solve. Then graph each solution set on a number line.

1. $y-5>-2$ \qquad
2. $n+5 \leq 11$ \qquad

3. $y-5>-$
4. $x+4<-1$ \qquad

5. $h+20>2$ \qquad
6. $p+9 \geq-3$ \qquad
7. $s-7<-16$ \qquad
Solve. Check each answer.
8. $41+g>27$
9. $w+23 \geq-18$
10. $a+15 \leq 9$
11. $z+27<16$
12. $-3 \leq t+17$
13. $78 \geq b+64$
\qquad
14. In order for a field trip to be scheduled, at least 30 students must sign up. So far, 23 students have signed up. At least how many more students must sign up in order for the field trip to be scheduled?
\qquad Date \qquad Class \qquad
California Standards Preview of 4 7AF4.0

Practice

11-7 Solving Inequalities by Multiplying or Dividing

Solve.

1. $\frac{n}{5} \leq 1.6$
2. $\frac{b}{3}>-8$
3. $\frac{a}{3} \geq-9$
4. $\frac{t}{-6}<-7$
5. $\frac{s}{-12} \leq-5$
6. $\frac{r}{5.3} \leq 6$

Solve. Check each answer.
7. $8 c<-64$
8. $-16 a \geq-24$
9. $12 t>9$
10. $-3 s \leq-180$
11. $18 b>24$
12. $6 m \geq 4$
13. It cost Sophia $\$ 530$ to make wind chimes. How many wind chimes must she sell at $\$ 12$ apiece to make a profit?
14. It cost the Wilson children $\$ 55$ to make lemonade. How many glasses must they sell at $75 ¢$ each to make a profit?
15. Jorge's soccer team is having its annual fund raiser. The team hopes to earn at least three times as much as it did last year. Last year the team earned $\$ 87$. What is the team's goal for this year?
\qquad Date \qquad Class \qquad California Standards Preview of 7AF4.1

Lesson Practice

11-8 Solving Two-Step Inequalities

Solve. Then graph each solution set on a number line.

1. $5 x-8<17$ \qquad ↔ | 1 | 1 | 1 1 1 | |
2. $\frac{r}{3}+5 \geq 9$ \qquad

3. $-4 n+8<-4$ \qquad

4. $\frac{z}{7}-6 \geq-5$ \qquad

5. $\frac{w}{-5}+4<9$ \qquad

6. $\frac{u}{2}-5 \leq-9$ \qquad

Solve.

7. $-7 d+8>29$
8. $4 g-18 \leq-2$
9. $12-3 b<9$
10. $\frac{a}{4}-7<-2$
11. $9+\frac{c}{6} \leq 17$
12. $\frac{2}{3} p-8 \geq 4$
\qquad
13. Fifty students in the seventh grade are trying to raise at least $\$ 2,000$ for sports supplies. They have already raised $\$ 750$. How much should each student raise, on average, in order to meet the goal?
