Review of Exponents

What are Exponents?

Exponents are a shorthand way to show how many times a number (called the base) is multiplied to itself. For example, in the power $8^{2}, 8$ is the base and 2 is the exponent. This expression tells us to multiply 8 to itself twice, or " 8 to the power of 2 ".

$$
8^{2}=(8 \times 8)=64
$$

Warning: Watch for the Karat! Sometimes we use the karat symbol ${ }^{\wedge}$ (Shift- 6 on a computer keyboard) to indicate an exponent. For example: $2^{\wedge} 4=2^{4}=2 \times 2 \times 2 \times 2=16$.

Negative Exponents

In mathematics, the negative symbol actually means "the opposite of". The opposite of a positive number is a negative number. The opposite of a negative number is a positive number $(-(-x)=x)$. The opposite of addition is subtraction. The opposite of multiplication is division.
Because exponents mean multiple-multiplication, the opposite of an exponent means multipledivision. To turn a negative exponent into a positive exponent, simply move the power to the other side of the division line, and make the exponent positive.

$$
\begin{gathered}
\frac{a^{3} b^{-5}}{c^{-4} d^{7}}=\frac{a^{3} c^{4}}{b^{5} d^{7}} \\
\frac{3}{x^{-4}}=3 x^{4}
\end{gathered}
$$

Example 1: Moving a negative power in the numerator to the denominator.

$$
8^{-1}=\frac{1}{8^{1}}=\frac{1}{8}=1 \div 8=0.125
$$

Example 2: Moving a negative power in the denominator to the numerator.

$$
\frac{1}{12^{-3}}=\frac{12^{3}}{1}=\frac{(12 \times 12 \times 12)}{1}=1,728
$$

Example 3: Removing a negative exponent in detail

$$
\begin{aligned}
5^{-3} & =\left(\frac{5}{1}\right)^{-3} & \text { Write the power as a fraction } \\
& =\left(\frac{1}{5}\right)^{3} & \text { Invert the fraction; the exponent becomes positive } \\
& =\left(\frac{1}{5} \times \frac{1}{5} \times \frac{1}{5}\right)=\frac{1}{(5 \times 5 \times 5)}=\frac{1}{5^{3}} & \text { Equivalent forms; simplify to solve } \\
& =\frac{1}{125}=0.008 & \text { Solution as fraction and decimal }
\end{aligned}
$$

Zero Exponents

The value of a zero exponent $\left(x^{0}\right)$ is always 1 .

$$
1=2^{0}=3^{0}=4^{0}=5^{0}=6^{0}=7^{0}=n^{0}
$$

$\left.\begin{array}{lrr}\hline \text { Power } & \text { Factored = Solution } & \text { Pattern } \\ \hline 2^{4} & (2 \times 2 \times 2 \times 2) & =16 \\ 2^{3} & (2 \times 2 \times 2) & =8 \\ 2^{2} & (2 \times 2) & =4 \\ 2^{1} & (2) & =2\end{array}\right)(16 \div 2)$

Adding Exponents

Subtracting Exponents
Multiplying Exponents
Dividing Exponents

